
Escape Analysis for Static Single Assignment Form

Luigi D. C. Soares1, Luı́s F. W. Góes1

1Institute of Exact Sciences and Informatics (ICEI)
Pontifical Catholic University of Minas Gerais (PUC-MG)

Belo Horizonte, MG - Brazil

luigi.soares@sga.pucminas.br, lfwgoes@pucminas.br

Abstract. In this work we proposed a type of static analysis called Escape Anal-
ysis, which aims at identifying cases where it is safe to allocate in the stack an
element that would initially be stored in the heap. In the approach presented
here, this analysis is being done by means of building and traversing a directed
graph G. Each edge of the set E ∈ G connects a value v of a function with the
values that contains v as an argument (i.e. places where v is being used). We
tested the algorithm with one synthetic and four real benchmarks. The results
show that the overhead introduced by the garbage collector can cause signifi-
cant impacts on the response times of some applications.

Resumo. Neste trabalho, foi proposto um tipo de análise estática conhecida
como Escape Analysis. Esta possui como objetivo a identificação de situações
nas quais é seguro alocar na pilha um determinado elemento que antes seria
armazenado no heap. Na abordagem apresentada, a análise é realizada a partir
da construção de um grafo direcionado G. Uma aresta do conjunto E ∈ G
conecta um valor v de uma determinada função com valores que possuem v
como argumento (i.e. locais onde v é utilizado). Cinco benchmarks diferentes
(um sintético e quatro reais) foram utilizados para avaliar o algoritmo proposto.
Os resultados mostraram que a sobrecarga introduzida pelo coletor de lixo pode
causar impactos significativos nos tempos de resposta de algumas aplicações.

1. Introduction

Memory area reserved for program data is typically composed by three distinct regions
of: (a) code; (b) global/static data; and (c) dynamic allocation. The last one is defined as
dynamic because its size changes during runtime. It is divided into a stack, which works
in a LIFO (last in, first out) manner, and a heap1 [Louden 1997]. They differ by two main
characteristics: performance and knowledge about lifetime of each object.

Access to data allocated in the stack area is extremely fast; in the heap, however,
it is slower and therefore requires efficient management so this does not become a bot-
tleneck. Every item pushed into the stack is popped when it leaves the scope. These
instructions are determined at compile-time. On the other hand, a value stored in the heap
has unknown lifetime. Thus, they remain alive until being explicitly destroyed.

1It should be noted that this is not related to the heap data structure. It is named this way for historical
reasons.

Some language implementations imply that heap management must be done by
the programmer (e.g. in C, with malloc and free). This manual task is complex and can
cause multiple errors. Among them are: dangling pointers, which are objects that do not
hold reference to a valid location; memory leaks, which refer to allocated areas without
valid pointers, making them impossible to be released; and double free (calling free on a
pointer twice).

For this reason, many languages implement automatic dynamic allocators. Their
main objective is to collect objects no longer accessible from program variables. This has
traditionally been done either by garbage collection or reference counting. Garbage col-
lection involves a periodic disruption of program execution. Reference counting, whereas
less disruptive, normally requires substantial storage overhead. Hence, a good heap man-
ager should utilize memory space effectively and satisfy requests in as few instructions as
possible [Barth 1977, Iyengar 1996].

Although less common than the cited techniques, there are other ways to deal
with automatic memory management. Some of them are based on static analysis, thus
eliminating runtime costs of space and time. The present work intends to reduce this
overhead by transferring a slice of that to compile-time through analysing intermediate
code produced by the compiler.

For that, a decision was made to work with the Go programming language since
it supplies the tools needed. It provides a way to visualize the Static Single Assignment
form (SSA), which is a midway representation that requires each variable to be assigned
exactly once and defined before being used. Go compile tool also provides a way of
printing some information about the optimizations applied in the compiling process, like
whether a variable x is being allocated on the heap or not.

An alternative to the well-known automatic storage methods is the Region-Based
Memory Management (RBMM). There are some attempts to implement this kind of tech-
niques. In Grossman et al. (2002), aspects of a new language called Cyclone were de-
scribed. It is designed to be very close to C, but safe with respect to memory management.
To bring this safety to the language they implemented a region-based system. However,
Cyclone requires programmers to write some explicit annotations.

In a recent paper, Davis (2015) describes two schemes: an alone implementation
of region-based algorithm and a technique which combines that with garbage collection.
His solution eliminates the need to write those annotations required by Cyclone. Guyer
et al. (2006) also chose the mixed strategy but with a different design. Their approach
works by inserting frees to a garbage-collected system.

The main goal of this research is to propose an algorithm which also describes
a method that mixes the power of garbage collection with a static analysis that aims to
reduce the runtime overhead introduced by the garbage collector (GC). This analysis is
called Escape Analysis. It works by detecting the maximum amount of variables that are
safe to be allocated in the stack, avoiding the need of invoking the GC.

One must note that this kind of analysis has already been adopted by the designers
and maintainers of the Go compiler. Although they did a great job in that, it still has some
flaws to be addressed. Having said that, the implementation described in this paper can
be thought of as a complement of the Escape Analysis currently running in the building

process of every Go program.

This paper is organized as follows. Section 2 overviews the theory needed for bet-
ter understanding of what was proposed. Section 3 presents the works related to compile-
time strategies for memory management, either fully static or a mix of that with runtime
techniques. Section 4 introduces the resources as well as the benchmarks used in this
work. Section 5 describes one of those cases not covered yet by the analysis implemented
in the Go compiler. Section 6 describes the algorithm implemented. Section 7 presents
the results achieved. Finally, section 8 discusses the present and the future of this work.

2. Background

2.1. Static Single Assignment Form

In compiler design, Static Single Assignment Form (SSA) is a property of an interme-
diate representation, which requires each variable to be assigned exactly once. That is,
if a variable x was assigned twice in the source code, the translated version will present
two distinct values (one for each assignment). Moreover, every variable must be defined
before it is used. This kind of representation can facilitate the implementation of a bunch
of optimizations, such as constant propagation, register allocation and dead code elimina-
tion.

The Go compiler adopt the SSA as its intermediate code, applying all the opti-
mizations on top of that form. A function in the Go’s SSA representation mainly consists
of a name, a type (its signature), a list of blocks that form its body, and the entry block
within said list. When a function is called, the control flow is handed to its entry block.
If the function terminates, the control flow will eventually reach an exit block. Further-
more, a function may have zero or multiple exit blocks, since a Go function can have any
number of return points, but it must have exactly one entry point block.

A block represents a basic block in the control flow graph of a function. It is,
essentially, a list of values that define the operation of this block. It also contains a unique
identifier, a kind (e.g. plain, if and exist), and a list of successor blocks. The plain block
simply hands the control flow to another block, thus its successors list contains one block.
The exit block have a final value, called control value, which must return a memory state.
Finally, the if block has a single control value that must be a boolean value, and it has
exactly two successor blocks.

A value is the basic building block of SSA. It must be defined exactly once, but it
may be used any number of times. Moreover, it mainly consists of a unique identifier, an
operator, a type, and some arguments. An operator describes the operation that computes
the value. If it takes a memory argument then it depends on that memory state. Besides,
an operator where the return type is the memory type impacts the state of memory. This
ensures that memory operations are kept in the right order.

For example, the store operator take three values as arguments. The first two are
the destination and source values, respectively. The last argument is the memory state. At
last, the value returned by store is of memory type. It may be represented as follows:

vn = Store < mem > {int} vi vj vm

2.2. Escape Analysis
Escape analysis refers to a compile-time approach that simply establishes whether an
object can be stack-allocated or not [Blanchet 2003]. It is a technique that determines the
set of items that escape a method invocation [Choi et al. 2003]. An object is said to escape
from a function or procedure m if its lifetime exceeds the lifetime of m [Blanchet 1999].

To better illustrate that, let f : Int −→ ∗Int be a function that receives an integer
and returns a pointer to some address that holds another integer. Let’s also define another
function g : Int −→ Int that takes an integer, calls f and returns another integer. What
these functions themselves do is not really important, since the focus here is in what is
being returned by f and used by g. Both f and g are defined below. Consider &y as
taking the address of y and ∗y as getting the actual value pointed by y.

let f(x) = &y

where y = x+ 1

let g(x) = ∗y
where y = f(x)

Suppose that the compiler is designed to allocate y in the stack frame of f . Func-
tion g calls f and expects a valid address to be returned. But, at the moment that f returns,
its stack frame is released. Therefore, address of y, which was allocated in the stack frame
of f , is now invalid. This happens because the lifetime of y surpasses the lifetime of f .
Hence, y escapes from f .

This kind of analysis allows some optimizations to be performed. The main im-
provements are: (a) stack-allocating elements that at first would be allocated in the heap
and then reclaimed using garbage collection; and (b) reusing objects no longer needed
without invoking GC [Park and Goldberg 1992].

3. Related Work
The literature on heap management is extensive. Most of that relies on runtime techniques.
Garbage collection already has a vast variety of implementations that perform better or
worse accordingly with the environment specifications (e.g. real-time or distributed sys-
tems). However, static and mixed approaches have also been studied for decades. This
section overviews the related works based on these strategies.

3.1. Static Analysis
Park and Goldberg (1991) describes a method for reducing the time, code and commu-
nication overhead of reference counting. They do that by means of an Escape Analy-
sis. Their approach is based on the observation that such overheads can be reduced by
avoiding unnecessary reference count updates. This is done by using statically inferred
information about the lifetime of each reference.

Choi et al. (2003) presents a framework for Escape Analysis based on a sim-
ple program abstraction called the connection graph. It captures the relationships among

heap-allocated items and object references. Blanchet (1999, 2003) also describes a frame-
work for Escape Analysis. They aim to reach not only a precise but also a fast analysis.
For that they chose to represent the escaping part of an object as an integer. This integer
is said to be the context associated with the object.

Kotzmann and Mössenböck (2005) proposes an intraprocedural and interproce-
dural algorithm for Escape Analysis in the context of dynamic compilation where the
compiler has to cope with dynamic class loading and deoptimization. It was implemented
for Sun Microsystems’ Java HotSpotTM client compiler and operates on an intermediate
representation in SSA form. The analysis is used for scalar replacement of fields and
synchronization removal, as well as for stack allocation of objects and fixed sized arrays.
The results of the interprocedural analysis support the compiler in inlining decisions and
allow actual parameters to be allocated on the caller stack.

Guyer et al. (2006) introduces a new memory management method called free-me
compiler analysis. It merges a static analysis and a garbage collection technique. It works
by automatically inserting calls to the free routine at the point an object dies. On average,
the free-me analysis deallocates from 32% up to 80% of all items in their benchmarks.

Stadler et al. (2014) presents an algorithm that performs control flow sensitive
Partial Escape Analysis in a dynamic Java compiler. It allows Escape Analysis, Scalar
Replacement and Lock Elision to be performed on individual branches. They imple-
mented the algorithm on top of Graal, an open-source Java just-in-time compile. In order
to analyze the effect of Partial Escape Analysis, they used the DaCapo, ScalaDaCapo and
SpecJBB2005 benchmarks. The results were evaluated in terms of run time, number and
size of allocations, and number of monitor operations. It performs particularly well in sit-
uations with additional levels of abstraction, such as code generated by the Scala compiler.
It reduces the amount of allocated memory by up to 58.5%, and improves performance
by up to 33%.

3.2. Region-Based Memory Management
Gay and Aiken (1998) shows a detailed comparison of the performance of regions with
explicit malloc/free calls and conservative garbage collection. In order to reach that goal
they use a set of allocation-intensive benchmark programs. They conclude that their ex-
plicit regions are faster than either malloc/free or conservative garbage collection meth-
ods, with the speedup sometimes being up to 16%.

Grossman et al. (2002) focus on the aspects of Cyclone’s memory management
system. It is implemented as a RBMM that tries to bring safety to the language by pre-
venting dangling-pointer dereferences and space leaks. Their work makes the following
technical contributions: (a) region subtyping; (b) simple effects; (c) default annotations;
and (d) integration of existencial types. They compared the differences between Cyclone
and C codes. Results showed that both the overall changes in the program and the number
of region annotations are small.

Davis (2015) describes two implementations of a RBMM system. The first one
relates only to the compile-time approach; the second combines regions with a garbage
collection technique. He chose to work with the Go programming language. The results
showed that in some cases his work provides better performance than the standard garbage
collector (GC) implemented by Go. However, there are benchmarks that run faster with

the Go approach. Furthermore, the combined technique often requires more memory
space.

The implementation being proposed here does not differ that much from the ones
described above. It takes into consideration that heap allocations and deallocations are
expensive. Therefore, they need to be avoided as much as possible. It is true that garbage
collection algorithms have been improved in the last years. However, it is also true that
there is no way to completely remove the runtime overhead introduced by this kind of
technique. Moreover, it must be note that each minimal speedup may have impact not
only in the programs themselves but also in the resources being used (e.g. energy).

Having said that, the main difference between the approaches above and the one
detailed here is that the latter tries to complement an already existing system to attack
the flaws not covered yet. By doing that, it is possible to reduce even more the heap
allocations introduced by the compiler. Hence, the objective is to make the GC be called
only to clear the mess added by objects that cannot have their lifetime tracked at all.

The algorithm being proposed works by building and traversing a directed graph
G. Each edge of the set E ∈ G connects a value v of a function with the values that
contains v as an argument (i.e. places where v is being used). Besides that, for each
one of those values a region is assigned. That region may be either inside or outside the
function. This is used to determine the value’s lifetime.

Furthermore, we walk through the graph G in a depth-first search approach, la-
beling each node with one of the following states: (a) safe; (b) may escape; and (c) must
escape. If a node is said to be safe, there is no reason to analyze its adjacent vertex. In
contrast, if a node is defined as must escape then the analysis is finished and the value
being verified indeed escape to the heap.

4. Methodology

4.1. Tools
Go was the language of choice for the development of this project. It gives us the ability
to visualize the transformations performed by the compiler. Each of them is called a
pass. Figure 1 summarize these steps. First, an Abstract Syntax Tree (AST) is generated
from the source code. The start pass is the Static Single Assignment form (SSA) that is
produced from the AST. Listings 1 and 2 show a simple code example written in Go and
the SSA generated from it. Intermediate passes do all kinds of optimizations. For the
sake of simplicity they were grouped together as opts. The lower pass converts the SSA
representation from being machine-independent to being machine-dependent. Finally, the
genssa is the final code generated by the compiling process.

Listing 1. Example of source code
1 package main
2
3 func foo () {
4 x := 1
5
6 s := make ([] ∗ i n t , 1)
7 s [0] = &x
8 }

Sources AST Start

OptsLowerGenssa

Figure 1. A summary of the transformations executed by the compiler

Listing 2. The SSA generated

1 b1 : / / A new b l o c k l a b e l .
2
3 v1 = InitMem <mem> / / I n i t i a l i z e t h e memory s t a t e .
4
5 v2 = SP <u i n t p t r > / / S t a c k P o i n t e r .
6
7 v3 = SB <u i n t p t r > / / S t a t i c base p o i n t e r (g l o b a l
8 / / p o i n t e r s) .
9

10 v4 = O f f P t r <∗∗byte> [0] v2 / / P o i n t e r t o t h e s t a c k w i t h
11 / / o f f s e t 0 .
12
13 v5 = Addr <∗u i n t 8> { t y p e . [2] i n t } v3 / / Addres s o f a p o i n t e r t o t h e
14 / / t y p e [2] i n t . T h i s i s t h e
15 / / t y p e o f t h e v a l u e t h a t w i l l
16 / / be a l l o c a t e d i n t h e heap .
17 / / The r e t u r n e d v a l u e (t h e
18 / / a d d r e s s) i s ∗ u i n t 8 , which i s
19 / / t h e same as a ∗ b y t e .
20
21 v6 = S t o r e <mem> {∗ b y t e } v4 v5 v1 / / S t o r e v5 (∗ b y t e) t o v4
22 / / (∗∗ b y t e) . The l a s t arg (v1)
23 / / i s t h e memory s t a t e (i . e .
24 / / t h e v a l u e r e l a t e d t o t h e
25 / / l a s t o p e r a t i o n t h a t changed
26 / / t h e memory s t a t e) . S t o r e
27 / / o p e r a t i o n changes t h e memory
28 / / s t a t e s i n c e i t s r e t u r n t y p e
29 / / i s ”mem” .
30
31 v7 = S t a t i c C a l l <mem> { r u n t i m e . n e w o b j e c t } [1 6] v6
32 / / C a l l t o t h e r u n t i m e f u n c t i o n
33 / / ” n e w o b j e c t ” t h a t i s
34 / / r e s p o n s i b l e t o a l l o c a t e a
35 / / new v a l u e i n t h e heap . As
36 / / S t o r e , S t a t i c C a l l o p e r a t i o n
37 / / a l s o changes t h e memory
38 / / s t a t e .
39
40 v8 = O f f P t r <∗∗ i n t > [8] v2 / / P o i n t e r t o t h e s t a c k w i t h
41 / / o f f s e t 0 .
42

43 v9 = Load <∗ i n t > v8 v7 (&x [∗ i n t]) / / Get t h e v a l u e (a d d r e s s)
44 / / t h a t w i l l be r e t u r n e d by
45 / / r u n t i m e . n e w o b j e c t .

46
...

The Go compiler also allows one to print optimization decisions by passing the
flag -m to the compile command. Assuming the code illustrated in listing 1 is placed
inside a file named main.go, when running the command go tool compile -m main.go the
output is the following:

main.go : 3 : 6 : can inline foo

main.go : 7 : 9 : &x escapes to heap

main.go : 4 : 2 : moved to heap : x

main.go : 6 : 11 : foo make([] ∗ int, 1) does not escape

The second and third lines of the output show that the lifetime of the variable x
surpasses the lifetime of the function foo. Therefore, x needs to be heap-allocated. The
Go compiler already has an escape analysis implemented, but still there are some cases
not covered yet. We described one of them later in section 5. Thereby, the present work
aims to address these situations.

4.2. Benchmarks

In order to analyze the results of this work a total of five benchmarks were used, split into
one synthetic and four real applications. The synthetic one (listing 3) extends the example
presented on section 5 by appending elements to a slice. The total number of insertions
follows the slice size, which varies from 128 up to 1024.

Listing 3. Synthetic benchmark
1 package main
2
3 i m p o r t (
4 ” math / r and ”
5 ” t e s t i n g ”
6)
7
8 c o n s t (
9 s i z e = 128 / / 128 , 256 , 512 and 1024 .

10 dummyVal = 10000
11)
12
13 / / B e n c h m a r k S l i c e . . .
14 func BenchmarkS l i ce (b ∗ t e s t i n g . B) {
15 f o r i := 0 ; i < b .N; i ++ {
16 s l i c e := make ([] ∗ i n t , s i z e)
17
18 s l i c e [0] = new (i n t)
19 ∗ s l i c e [0] = dummyVal

20
21 s l i c e [1] = new (i n t)
22 ∗ s l i c e [1] = dummyVal
23
24 . . .
25
26 s l i c e [s i z e −1] = new (i n t)
27 ∗ s l i c e [s i z e −1] = dummyVal
28 }
29 }

The remaining programs are real benchmarks maintained in the Go’s official
repository2. Table 1 presents a small description for the real programs of the bench-
mark suite. Furthermore, these applications were tested with respect to their performance
(i.e. response time). To properly process the results achieved we used the tool bench-
stat3. Finally, to ensure the maximum consistency of the data collected, an average of the
response time between a hundred executions was taken for each benchmark in the suite.

Benchmark Description
Build Examines compiler and linker performance
Garbage Stresses the garbage collector
Http Examines client/server http performance
Json Marshals and unmarshals approximately 2MB json string

with a tree-like object hierarchy

Table 1. Benchmark descriptions

5. Motivation

Despite the existing implementation of Escape Analysis being already an efficient one,
there are still some flaws. Listing 4 illustrates a situation in which it is possible to guaran-
tee the safety of stack-allocating some value but it is still escaping to the heap. Although
it may be possible to address these cases by extending the current algorithm, the power of
the SSA form ends up offering some facilities to track the lifetime of x. For example, one
may easily build a graph with all direct and indirect references to an element. This is the
main reason behind the option of developing an algorithm from scratch.

Consider the function foo showed in the listing 4. It creates a slice s of pointers to
integers and assigns the address of the variable x to the first position of s. It also constructs
a map where the key is an integer and the value is a pointer to an integer. Similarly to the
slice case, foo sets the element related to the key 0 as the address of the variable y.

It is clear that there is no reason for moving the values under the variables x and
y to the heap, since their lifetime is the same as of the function where they were created.
Still, what happens is that the slice and the map themselves do not escape, but any value
inserted into such structure does. Therefore, the elements related to x and y are moved to
the heap. The output of the compilation process of this function with the flag -m follows:

2https://github.com/golang/benchmarks
3https://godoc.org/golang.org/x/perf/cmd/benchstat

main.go : 4 : 2 : moved to heap : x

main.go : 8 : 2 : moved to heap : y

main.go : 5 : 11 : foo make([] ∗ int, 1)does not escape
main.go : 9 : 11 : foo make(map[int] ∗ int, 1) does not escape

Listing 4. Assigment to a slice and a map
1 package main
2
3 func foo () {
4 x := 1
5 s := make ([] ∗ i n t , 1)
6 s [0] = &x
7
8 y := 1
9 m := make (map [i n t]∗ i n t , 1)

10 m[0] = &y
11 }

6. Proposed Algorithm
Let G = 〈V,E〉 be a directed graph that connects a node v ∈ V (in the SSA form) with
each reference (direct or indirect) to it. A value v is said to be referenced by u ∈ V if v
appears as one of the arguments of u. Each vertex can be labeled as one of the following
states: safe, may escape or must escape. Moreover, if there is a path from v to u and u is
categorized as must escape, then v must also be defined as must escape. Figure 2 depicts
the graph constructed from the values of the listing 2 as an example.

v1 v2v3

v4v5 v6

v7

v8

v9

Figure 2. Example of a directed graph built from the values in the SSA form

The first step is to build the graph G. This is accomplished by calling a method
BuildGraph (algorithm 1) which runs through all the values of a given function F . Fur-
thermore, during this step the algorithm also determines whether the lifetime of a value
surpasses or not the lifetime of the function being analyzed. For that each node will be
assigned to a region by calling the method GetRegion (algorithm 2).

This region can be either inside or outside of F . If the region of a node v is said
to be outside and a node u can be reached from v, then the region of u must also be set

as outside. Hence, we also define a function named PropagRegion (algorithm 3) which
is responsible to propagate the region of each value that is considered as being outside of
F . This is accomplished by means of a breadth-first search approach.

The core algorithm works by traversing G in a depth-first search manner. This is
done by a function named Walk (algorithm 4) that takes the graph G and a start node s
as parameters. The initial vertex s is the one related to the value currently being heap-
allocated and which is going to be analyzed in order to determine if it can be instead
stack-allocated. For each node u reached, a function V isit is applied to verify if u must
escape or not. This function is detailed in algorithm 5.

If the result of applying V isit to a value u is must escape, then s is also defined as
must escape. Hence, there is no need to visit any other vertex. Else, if the result is safe,
then the algorithm prunes the graph by not visiting the edges that start from u. Otherwise,
the algorithm must continue traversing G (i.e. the may escape state is only a intermediate
one).

Algorithm 1 Creates a new graph G connecting each value v with its references ui
function BUILDGRAPH(F)

let G be a new graph
for each block b ∈ F do

for each value v ∈ b do
call GetRegion passing v to it
set the region of v as the region returned by GetRegion
add v as a node of G

for each block b ∈ F do
for each value v ∈ b do

for each argument a ∈ v do
add an edge from a to v

return G

Algorithm 2 Takes a value v and returns the corresponding region
function GETREGION(v)

if v is global then
return outside

else if v is a param (in/out) and the type t of v holds (or is) a pointer then
return outside

else if type t of v contains any underlying value (e.g. pointer or slice) then
loop through the underlying element until reaching the final type f
if f contains a pointer to the heap then

return outside
else

return inside

Algorithm 3 Walks through G in a BFS approach and propagates the region r of a value
u to other nodes wi if r is oustide

function PROPAGREGION(G)
for each node v ∈ G do

if region r of v is inside then skip to the next iteration
let Q be a new queue
enqueue v at Q

while Q 6= ∅ do
dequeue u from Q
for each adjacent node w of u not visited yet do

set the region r′ of w to outside
enqueue w at Q
mark w as visited

7. Results
We implemented a Escape Analysis on top of the SSA intermediate form as one of the
many passes done by the Go compiler. This decision was primarily made because of
the flexibility of building the analysis from scratch and without dependencies on any
other step of the compiling process. In order to evaluate the algorithm described in this
paper, we used four real benchmarks and one synthetic program. The response timesR old

i

and Rnew
i represents the run time of the original version and the one with the proposed

algorithm implemented. The speedup Si of a benchmark i is obtained as follows:

Si =
R old

i

Rnew
i

7.1. Synthetic Benchmark

Figure 3 presents a comparison between the run time of the synthetic benchmark when
compiled with and without the escape analysis proposed. We tested the synthetic program
configuring the slice size as 128, 256, 512 and 1024. Figure 4 shows the growth of the
response time when increasing the slice size. Lastly, table 2 contains the run time for each
test along with their respective speedups.

The results collected from the synthetic benchmark evidence the potential related
to the escape analysis described in this paper. It is clear that the overhead introduced
by the management of the heap area is high. Not only that, but when dealing with data
structures like lists this overhead also increases according to the number of elements being
manipulated.

7.2. Real Benchmarks

Figure 5 presents a visual representation of the data collected from the benchmarks. Ta-
ble 3 shows the average response time obtained for each application together with their
speedups. The response times related to the build benchmark are the same for both the
original and new versions, i.e. no speedup was reached. Nonetheless, the remaining
benchmarks indeed presented improvements when compiled considering the proposed

Algorithm 4 Walks through G in a DFS approach and applies V isit to each node reached
function WALK(G, s)

let S be a new stack
push the parents ui of v to S

while S 6= ∅ do
let u be the value popped from S
if u was already visited then

skip to the next iteration

V isit(u)
mark u as visited

if state of u is must escape then
set the state of s as must escape
break the while loop

if state of u is safe then
set the state of s as safe
skip to the next iteration

push the parents ti of u to S

Size Old response time (σ) New response time (σ) Speedup
128 1.95 µs (0.002 µs) 0.04 µs (0.00004 µs) 48.75
256 3.98 µs (0.012 µs) 0.08 µs (0.00006 µs) 49.75
512 8.01 µs (0.030 µs) 0.18 µs (0.00040 µs) 44.50
1024 16.1 µs (0.027 µs) 0.40 µs (0.00020 µs) 40.25

Table 2. Speedups related to each slice size

algorithm. The json application was the one that achieved the biggest speedup (approxi-
mately 3.4%).

By analyzing the experimental results the initial conclusion is that the implemen-
tation did not perform well when verified against a single program execution. However,
this kind of optimization not only impacts a single program but several of them. In this
sense, the response times accomplished were significant. Moreover, the algorithm devel-
oped was also able to successfully target one of the flaws (detailed in section 5) of the
existing escape analysis implementation.

8. Conclusion and Future Works

We presented a type of static analysis responsible for identifying situations where it is
safe to store in the stack a value that would initially be heap-allocated. The results show
that the algorithm have high potential to reduce the overhead caused by the GC and,
consequently, the response times of the applications. The algorithm was also capable of

Algorithm 5 Visit a node v to analyze if this value should escape to the heap
function VISIT(v)

if v does not holds or isn’t a pointer then
set the state of v as safe

else if v is related to a operation with write semantics then
if the source value does not contains any pointer then

set the state of v as safe
else if the region of the destiny value is outside then

set the state of v as must escape
else

set the state of v as may escape
else

set the state of v as may escape

Figure 3. Response time
per size of the slice

Figure 4. Response Time
Growth

targeting the case described in section 5, meaning that there is at least one situation that
could be improved in not one but all of the Go programs that it may appears.

The speedups obtained from the real benchmarks were limited due to some re-
strictions faced during the development of this project. The most important among them
was the one related to the maximum depth of the analysis. In other words, we could not
find a way of verifying the functions called by the current one being verified. Thereby, if
a value v ∈ G′ (where G′ is the subgraph related to the heap-allocated element u being
analyzed) was being passed to any function as a parameter, then we had to give up and
consider that u escapes for sure. Hence, there is space to improve even more the current
implementation.

This improvement may be reached in some distinct ways. At first, one could delve
into the compiler code looking for approaches to enter into functions called by the current
one being analyzed. This way it would be possible to eliminate the restriction described
before, resulting in a deeper analysis. However, taking this path may probably lead into

Figure 5. Response time for each benchmark

Benchmark Old response time (σ) New response time (σ) Speedup
Build 25.1 s (0.13 s) 25.1 s (1.15 s) 1
Garbage 5.67 ms (0.11 ms) 5.59 ms (0.09 ms) 1.014
Http 17.4 µs (0.06 µs) 17.3 µs (0.07 µs) 1.005
Json 23.8 ms (0.93 ms) 23 ms (0.58 ms) 1.034

Table 3. Benchmark speedups

much higher compilation times.

A second option would be to insert calls to a deallocating routine related to the
garbage collector instead of rewriting the allocation instructions. While this method can-
not eliminate all of the overhead introduced by the garbage collector, it could cover a lot
of more cases than the rewriting approach.

To illustrate, consider the synthetic benchmark rewritten as a loop. With the al-
gorithm proposed here, there is no way to transform the heap-allocation since the stack
address will always be the same. This happens because the lifetime of the element will
be related to the loop, i.e. the value is created and destroyed in that block. In such case,
introducing a call to some function responsible to destroy that object instead of rewriting
the allocation may be a more efficient proposal.

References

Barth, J. (1977). Shifting garbage collection overhead to compile time. Communications
of the ACM, 20(7):513–518.

Blanchet, B. (1999). Escape analysis for object-oriented languages: Application to java.
SIGPLAN Not., 34(10):20–34.

Blanchet, B. (2003). Escape analysis for Java (TM): Theory and practice. ACM Transac-
tions on Programming Languages and Systems, 25(6):713–775.

Choi, J., Gupta, M., Serrano, M., Sreedhar, V., and Midkiff, S. (2003). Stack allocation
and synchronization optimizations for Java using escape analysis. ACM Transactions
on Programming Languages and Systems, 25(6):876–910.

Davis, M. (2015). Automatic memory management techniques for the go programming
language. PhD thesis, Department of Computer Science and Software Engineering The
University of Melbourne. Retrieved from http://hdl.handle.net/11343/
58707.

Gay, D. and Aiken, A. (1998). Memory management with explicit regions. ACM SIG-
PLAN NOTICES, 33(5):313–323. Annual SIGPLAN Conference on Programming
Language Design and Implementation, Montreal, Canada, Jun 16-19, 1998.

Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., and Cheney, J. (2002). Region-
based memory management in cyclone. ACM SIGPLAN Notices, 37(5):282–293. Con-
ference on Programming Language Design and Implementation (PLDI 02), BERLIN,
GERMANY, JUN 17-19, 2002.

Guyer, S. Z., McKinley, K. S., and Frampton, D. (2006). Free-me: A static analysis for
automatic individual object reclamation. ACM SIGPLAN Notices, 41(6):364–375.

Iyengar, A. (1996). Scalability of dynamic storage allocation algorithms. In Proceedings
of 6th Symposium on the Frontiers of Massively Parallel Computation (Frontiers ’96),
pages 223–232.

Kotzmann, T. and Mössenböck, H. (2005). Escape analysis in the context of dynamic
compilation and deoptimization. In Proceedings of the 1st ACM/USENIX International
Conference on Virtual Execution Environments, VEE ’05, pages 111–120, New York,
NY, USA. ACM.

Louden, K. C. (1997). Compiler Construction: Principles and Practice. PWS Publishing
Co., Boston, MA, USA.

Park, Y. and Goldberg, B. (1992). Escape Analysis on Lists. SIGPLAN Notices,
27(7):116–127.

Park, Y. G. and Goldberg, B. (1991). Reference escape analysis: Optimizing reference
counting based on the lifetime of references. In Proceedings of the 1991 ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics-based Program Manipulation,
PEPM ’91, pages 178–189, New York, NY, USA. ACM.

Stadler, L., Würthinger, T., and Mössenböck, H. (2014). Partial escape analysis and scalar
replacement for java. In Proceedings of Annual IEEE/ACM International Symposium
on Code Generation and Optimization, CGO ’14, pages 165:165–165:174, New York,
NY, USA. ACM.

