
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Luigi Domenico Cecchini Soares

MEMORY-SAFE ELIMINATION OF SIDE CHANNELS

Belo Horizonte
2022

UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Luigi Domenico Cecchini Soares

ELIMINAÇÃO AUTOMÁTICA DE CANAIS LATERAIS SEM ACESSOS
INCONSISTENTES À MEMÓRIA

Belo Horizonte
2022

Luigi Domenico Cecchini Soares

MEMORY-SAFE ELIMINATION OF SIDE CHANNELS

Final version

Thesis presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial ful-
fillment of the requirements for the degree of Master in Com-
puter Science.

Advisor: Fernando Magno Quintão Pereira

Belo Horizonte
2022

Luigi Domenico Cecchini Soares

ELIMINAÇÃO AUTOMÁTICA DE CANAIS LATERAIS SEM ACESSOS
INCONSISTENTES À MEMÓRIA

Versão final

Dissertação apresentada ao Programa de Pós-Graduação
em Ciência da Computação da Universidade Federal Minas
Gerais, como requisito parcial à obtenção do título de Mestre
em Ciência da Computação.

Orientador: Fernando Magno Quintão Pereira

Belo Horizonte
2022

© 2022, Luigi Domenico Cecchini Soares.
Todos os direitos reservados.

Soares, Luigi Domenico Cecchini.

S676m Memory-safe elimination of side channels [manuscrito] /
Luigi Domenico Cecchini Soares. – 2022.

91 f. il.

Orientador: Fernando Magno Quintão Pereira.

Dissertação (mestrado) – Universidade Federal de Minas
Gerais, Instituto de Ciências Exatas, Departamento de Ciência
da Computação.

Referências: f. 87-91

1. Computação – Teses. 2. Fluxo de Informação – Teses. 3.
Criptografia de dados (Computação) – Teses. 4. Criptografia –
Canais laterais – Teses. 5. Segurança da informação – Teses. I.
Pereira, Fernando Magno Quintão. II. Universidade Federal de
Minas Gerais, Instituto de Ciências Exatas, Departamento de
Ciência da Computação. III. Título.

CDU 519.6*46(043)

Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende
Costa CRB 6/1510 Universidade Federal de Minas Gerais - ICEx

B

Dedico este trabalho aos meus pais, Marcelo e Silvana, que
nunca mediram esforços para me apoiar. Sem eles, esta etapa
da minha vida não seria possível.

Agradecimentos

Agradeço ao professor Luís Fabrício Wanderley Góes, meu orientador durante a grad-
uação. Foi por meio dele que passei a conhecer o professor Fernando Magno Quintão
Pereira, que hoje é meu orientador no mestrado. Ao professor Fernando, por todo o su-
porte e por todos os ensinamentos durante estes últimos dois anos. É, certamente, uma
grande fonte de inspiração, como pesquisador, professor, orientador e como pessoa. Sem
ele, nada do que foi desenvolvido neste projeto seria possível. Aos meus colegas do Lab-
oratório de Compiladores (LaC), pelas experiências tanto profissionais quanto pessoais.
Em especial, ao Michael Canesche, que teve participação direta e foi de suma importância
para a realização dos experimentos apresentados neste trabalho. A todos os professores,
tanto atuais quanto passados, que contribuíram para que pudesse chegar até aqui. Por
fim, agradeço ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq),
pelo suporte financeiro dado ao longo destes dois anos.

“I’m not crazy. My mother had me tested.”
(Sheldon Cooper)

Resumo

Um programa é dito isócrono se seu tempo de execução não depende de informações
sensíveis. Isocronicidade é uma propriedade essencial em implementações criptográficas,
posto que programas isócronos não apresentam vazamento de informações relacionadas
a seus tempos de execução. Nesta dissertação, nós demonstramos como adaptar para o
contexto de resistência à canais laterais um algoritmo de linearização parcial de grafos
de fluxo de controle que foi, inicialmente, concebido para maximizar o desempenho em
programas vetorizados. Esta transformação é correta: dada uma instância das entradas
públicas, o programa parcialmente linearizado sempre executa a mesma sequência de in-
struções, independente das entradas secretas. Caso o programa original seja publicamente
seguro, os acessos à cache de dados serão indistinguíveis no código transformado. Esta
transformação é, também, ótima: todo desvio dependente de dados secretos é linearizado;
nenhum desvio que dependa apenas de dados públicos é linearizado. Assim, a transfor-
mação preserva laços que dependem de informações públicas. Se todos os desvios que
saem de um laço dependem de dados sensíveis, o programa modificado não terminará.
Nossa transformação estende trabalhos recentes de maneiras não triviais. Ela é capaz de
lidar com construções como “goto”, “break”, “switch” e “continue”, que não estão presentes
na linguagem de domínicio específico FaCT (2018). Assim como a ferramenta Constan-
tine (2021), nossa transformação garante invariância de operações, mas sem necessitar
de informações provenientes da execução dos programas. Além disso, em contraste com
SC-Eliminator (2018), nossa técnica é capaz de lidar com programas contendo laços sem
limites conhecidos em tempo de compilação.

Palavras-chave: Canal Lateral. Fluxo de Informação. Criptografia. Transformação de
Programas.

Abstract

A program is said to be isochronous if its running time does not depend on classified
information. Isochronicity is an essential property in cryptographic implementations, for
isochronous programs do not leak time-related information. In this thesis, we demonstrate
how to adapt to the context of side-channel resistance a partial control-flow linearization
algorithm initially conceived to maximize work performed in vectorized programs. This
transformation is sound: given an instance of the public inputs, the partially linearized
program always runs the same sequence of instructions, regardless of the secret inputs.
Incidentally, if the original program is publicly safe, accesses to the data cache will be data
oblivious in the repaired code. This transformation is also optimal: every branch that
depends on some secret data is linearized; no branch that depends on only public data is
linearized. Thus, the transformation preserves loops that depend on public information.
If every branch that leaves a loop depends on secret data, then the transformed program
will not terminate. Our transformation extends recent work in non-trivial ways. It han-
dles C constructs such as “goto”, “break”, “switch” and “continue”, which are absent in
the FaCT domain-specific language (2018). Like Constantine (2021), our transformation
ensures operation invariance, but without requiring profiling information. Additionally,
in contrast to SC-Eliminator (2018), our implementation handles programs containing
general, unbounded loops.

Keywords: Side Channel. Information Flow. Cryptography. Program Transformation.

Resumo Estendido

Um programa é dito isócrono se seu tempo de execução não depende de informações
sensíveis. Isocronicidade é uma propriedade essencial em implementações criptográficas,
posto que programas isócronos não apresentam vazamento de informações relacionadas a
seus tempos de execução. Fontes de variação no tempo de execução de um programa, que
causem vazamento de dados confidenciais, são conhecidas como canais laterais baseados
em tempo. Existem muitos trabalhos na literatura no âmbito tanto da detecção quanto da
remoção de tais canais. Ainda assim, a implementação de uma transformação de código
estática, buscando a proteção de programas gerais contra ataques baseados em tempo de
execução, permanece um problema em aberto.

Nesta dissertação, nós demonstramos como adaptar para o contexto de resistência
à canais laterais um algoritmo de linearização parcial de grafos de fluxo de controle que
foi, inicialmente, concebido para maximizar o desempenho em programas vetorizados.
Esta transformação é correta: dada uma instância das entradas públicas, o programa
parcialmente linearizado sempre executa a mesma sequência de instruções, independente
das entradas secretas. Caso o programa original seja publicamente seguro, os acessos
à cache de dados serão indistinguíveis no código transformado. Esta transformação é,
também, ótima: todo desvio dependente de dados secretos é linearizado; nenhum desvio
dependente apenas de dados públicos é linearizado. Assim, a transformação preserva
laços que dependem de informações públicas. Se todos os desvios que saem de um laço
dependem de dados sensíveis, o programa modificado não terminará.

Isocronicidade pode ser definida em termos de canais teóricos de informação, um
conceito utilizado extensivamente nos campos da Teoria da Informação e — mais próximo
ao contexto deste trabalho — Fluxo de Informação Quantitativo. Isto é, um programa
determinístico é caracterizado como isócrono apenas quando, para qualquer instância
das entradas públicas, o canal correspondente mapeia todas as instâncias de entradas
secretas para o mesmo traço de operações e acessos de memória. Diz-se que um canal
determinístico D refina outro canal C se, e somente se, D induz uma partição menos
complexa (i.e. com menos grupos) que aquela induzida por C. No contexto de vazamento
de informações, isto significa que o canal D nunca vaza mais do que o canal C. Para
programas que são seguros com sombra — uma forma mais fraca de segurança pública —
a abordagem descrita nesta dissertação produz código que refina sua contraparte original.

Nossa transformação estende trabalhos recentes de maneiras não triviais. Ela é
capaz de lidar com construções como “goto”, “break”, “switch” e “continue”, que não estão

presentes na linguagem de domínicio específico FaCT (2018). Assim como a ferramenta
Constantine (2021), nossa transformação garante invariância de operações, mas sem neces-
sitar de informações provenientes da execução dos programas. Além disso, em contraste
com SC-Eliminator (2018), nossa técnica é capaz de lidar com programas contendo laços
sem limites conhecidos em tempo de compilação.

Palavras-chave: Canal Lateral. Fluxo de Informação. Criptografia. Transformação de
Programas.

Extended Abstract

A program is said to be isochronous if its running time does not depend on classified
information. Isochronicity is an essential property in cryptographic implementations, for
isochronous programs do not leak time-related information. Sources of time variance that
cause sensitive data to leak are known as time-based side channels. There is much work
in the literature related to both the detection and mitigation of side channels. And yet,
the implementation of a static code transformation to protect general programs against
timing attacks remains an open question.

In this thesis, we demonstrate how to adapt to the context of side-channel resis-
tance a partial control-flow linearization algorithm initially conceived to maximize work
performed in vectorized programs. This transformation is sound: given an instance of the
public inputs, the partially linearized program always runs the same sequence of instruc-
tions, regardless of the secret inputs. Incidentally, if the original program is publicly safe,
then accesses to the data cache will be data oblivious in the repaired code. This transfor-
mation is also optimal: every branch that depends on some secret data is linearized; no
branch that depends on only public data is linearized. Thus, the transformation preserves
loops that depend on public information. If every branch that leaves a loop depends on
secret data, then the transformed program will not terminate.

Isochronicity can be defined in terms of information-theoretic channels, a concept
extensively used in the fields of Information Theory and — closer to the context of this
work — Quantitative Information Flow. That is, a deterministic program is characterized
as isochronous just when, for any instance of the public inputs, the corresponding channel
maps all instances of the secret inputs to the same trace of operations and memory
accesses. A deterministic channel D is said to refine another channel C if, and only if, D
induces a partition that is coarser than that induced by C. In the context of information
leakage, this means that D never leaks more than C. For programs that are shadow safe
— a weak version of public safety — the approach described in this thesis produces code
that refines its original counterpart.

Our transformation extends recent work in non-trivial ways. It handles C con-
structs such as “goto”, “break”, “switch” and “continue”, which are absent in the FaCT
domain-specific language (2018). Like Constantine (2021), our code transformation en-
sures operation invariance, but without requiring profiling information. Additionally, in
contrast to SC-Eliminator (2018), our implementation handles programs containing gen-
eral, unbounded loops.

Keywords: Side Channel. Information Flow. Cryptography. Program Transformation.

List of Figures

1.1 Functions oFdF, oFdT, oTdF and oTdT compare the user’s guess g with a se-
cret password pw. (a) oFdF returns immediately whenever two elements are
different; as such, it is neither operation nor data invariant. (b) oFdT always
performs the same number of comparisons; hence, it is data invariant, but it
still is not operation invariant. (c) oTdF is operation invariant; however, it has
indirect accesses through a table t, using secret-dependent indices (pw[i]),
and thus it is not data invariant. (d) oTdT always performs the same sequence
of instructions and memory accesses; thus, it is both operation and data in-
variant. 24

3.1 Dominance relation: every path from s — the unique start node — to node v

must go through node u; that is, u dominates v. 35
3.2 Post-dominance relation: every path from node u to d — the unique exit node

— must go through node v; that is, v post-dominates u. 36
3.3 The influence region of node u is composed by all node in paths from u to its

post dominator v; that is, all nodes in the colored region. 36
3.4 (a) Partition induced by An=1, g=[0], which corresponds to function oFdF from

Figure 1.1 (a). (b) Partition induced by Dn=1, g=[0], which corresponds to
function oTdT from Figure 1.1 (b). Channel An=1, g=[0] is refined by Dn=1, g=[0],
i.e. Dn=1, g=[0] leaks no more than An=1, g=[0]. 39

4.1 Syntax of the baseline language used throughout the thesis to design the
isochronous transformation. 42

4.2 Control-flow graph of the password comparison function oFdF seen in Fig-
ure 1.1 (a), written in our baseline language. 43

4.3 Recursive definitions of block and edge conditions. Function predecessors(ℓ)

gives all the blocks that are predecessors of block ℓ. Function terminator(ℓ)

returns the last instruction of the block labeled by ℓ (see Figure 4.1). 43
4.4 CFG of function oFdF from Figure 4.2, with n = 2 and the loop unrolled.

Edges are labeled with edge conditions (Definition 4.1, Figure 4.3). 44
4.5 Transformation rule for linearizing the CFG of a program. Function rewritebr

replaces every branch with another branch whose target is the next node in
the topological order. Function topological(G) returns the topological sort
(Definition 3.7) of the acyclic graph G. 45

4.6 Linearization of the CFG from Figure 4.4, following the rewrite rule defined in
Figure 4.5. The topological sort adopted for this transformation was: begin,
if.0, if.1, ret.false, end. 45

4.7 Transformation rules used to rewrite phi functions, pre-PCFL. Function
rewriteϕ takes a phi node and returns a combination of ctsels that are equiv-
alent to that phi node. If the phi node has only one incoming value, it is
equivalent to a simple assignment, and thus do not need any modifications. . . 46

4.8 (a) CFG before linearization. (b) CFG after linearization, with the phi function
at block g rewritten according to Figure 4.7; variables ec.d_g and ec.e_g store
the edge condition of, respectively, edges d → g and e → g from the original
graph (see Definition 4.1, Figure 4.3). 46

4.9 Transformation rules for memory operations. Function rewrite ld makes loads
memory safe, while function rewritest makes stores both memory safe and
sound with respect to whether they should or not take effect. Both rules rely
on block conditions (see Definition 4.1). 47

4.10 (a) Original load from Figure 4.4. (b) Transformed load. (c) Example of a
store. (d) Transformed store. 48

4.11 CFG from Figure 4.4 after linearization and with the instructions rewritten.
(a) The shadow memory and the size of inputs g and pw, used in the transfor-
mation of loads. (b) Computation of block conditions (§4.2, Figure 4.3). (c)
Predication of load instructions to ensure memory safety (§4.3.3, Figure 4.9).
(d) Transformation of a phi function (§4.3.2, Figure 4.7). 49

4.12 Interprocedural transformations. 51

5.1 (a) CUDA kernel that counts occurrences of keys in a matrix. (b) Control-flow
graph of the kernel. (c) Partially linearized control-flow graph. 53

5.2 Partial Control-Flow Linearization. linearize(G) produces a graph GL that
is a partially linearized version of G. A preprocessing step removes the back
edges in G before linearization; hence, linearize receives an acyclic graph. . . 55

5.3 Sequence of steps that function linearize in Figure 5.2 performs on the pro-
gram from Figure 5.1, given that Index = [0, 1, 3, 2, 4, 5]. 56

5.4 Recursive definitions of block and edge conditions for headers and tainted exit-
ing edges. Function predecessorsf is related to forward edges and predecessorsb

to back edges. When written without subscripts, BC (ℓ) (similarly for EC)
refers to the last execution of block ℓ. 59

5.5 (a) CFG from Figure 4.2; dashed arrows represent back edges; gray nodes
are tainted. (b) The CFG with collapsed loop; numbers indicate the com-
pact ordering. (c) Compact ordering of loop. (d) The collapsed CFG after
linearization. (e) Whole CFG after linearization. 62

5.6 (a) CFG before partial linearization; block b is tainted. (b) CFG after partial
linearization, with the phi function at block g rewritten; variable ec.d_g stores
the edge condition of edge d → g from the original graph (see Definition 4.1,
Figures 4.3 and 5.4). 65

5.7 Transformation rule for phi nodes. inst @ ℓ indicates that the instruction
belongs to the block labeled by ℓ. E(G) are the edges of graph G. fold relies
on edge conditions (see Definition 4.1, Figures 4.3 and 5.4). 66

5.8 (a) Original load from Figure 4.2. (b) Transformed load. (c) Example of a
store. (d) Transformed store. 67

5.9 CFG from Figure 4.2 after PCFL and with the instructions rewritten. (a) The
shadow memory and the size of inputs g and pw, used in the transformation of
tainted loads. (b) Computation of the block condition of the loop header (§5.3,
Figure 5.4). (c) Computation of the edge condition of the tainted exiting edge
body → ret.false (§5.3, Figure 5.4). (d) Predication of load instructions to
ensure memory safety (§5.4.3, Figure 4.9). (e) Transformation of a phi function
(§5.4.2, Figure 5.7). 70

6.1 Code size (in number of LLVM instructions) of transformed programs. Num-
bers on top show the size of original programs (compiled with LLVM 13.0
at the -O3 optimization level). Symbols in gray boxes show tools that are
missing for particular benchmarks. CTT refers to Constantine, SC refers to
SC-Eliminator. Orig refers to these two tools as originally implemented. CFL
refers to these two tools with control-flow linearization only — thus, closer to
our implementation of PCFL in purpose. 78

6.2 Time (in milliseconds) to apply each transformation onto the benchmarks. To
give the reader some perspective on this comparison, the numbers on top show
the time taken to run LLVM opt -O3 on each benchmark. The gray boxes
mark benchmarks that some tools could not handle. 79

6.3 Running time (in microseconds) of transformed programs. Numbers on top
show time of original programs (compiled with LLVM 13.0). Symbols in gray
boxes show missing tools for particular benchmarks. 81

6.4 Security guarantees achieved by the different tools. Cor indicates if the trans-
formed program produces the same output as its original counterpart (i.e. if the
transformed program is correct). Data refers to data invariance. Opr refers to
operation invariance without compiler optimizations. Opr3 refers to operation
invariance at the LLVM opt -O3 optimization level. 82

6.5 Comparison between programs written in C and linearized with PCFL, and
similar programs written in FaCT, using equivalent control-flow structures. The
column .o shows the size, in bytes, of the binary object file. The column
Instrs shows the number of instructions in the LLVM representation of each
program. Because they use different main functions, we show results with and
without this routine. 84

List of Tables

1.1 Summary of results from §6 with regard to the nine benchmarks that all
the tools can handle. Numbers are arithmetic means. Measurements hap-
pen after programs are transformed and then optimized with LLVM opt -O3.
Original refers to the benchmark without any transformation. PCFL and Lif

correspond to our implementations. CTT refers to Constantine; SC refers to
SC-Eliminator. These two tools can do control- and data-flow linearization.
Hence, -Orig refers to their original implementations, and -CFL refers to the
implementation with only control-flow linearization. Our approaches only do
control-flow linearization, but achieves data invariance for publicly-safe pro-
grams. 27

Contents

1 Introduction 21
1.1 The Breakthroughs of 2021 . 21
1.2 Enter Partial Control-Flow Linearization 22
1.3 The Contributions of this Work . 23

1.3.1 Threat Model . 25
1.3.2 Comparison with Previous Work 26

1.4 Summary of Results . 26
1.5 Publications . 27

2 Literature Review 28
2.1 Partial Control-Flow Linearization . 28
2.2 Side Channels . 29

2.2.1 Detection of Side Channels . 29
2.2.2 Mitigation of Side Channels . 30
2.2.3 Constant-Time Preservation . 32

3 Preliminaries 34
3.1 Graph Definitions . 34
3.2 Quantitative Information Flow . 36

4 Transforming Loop-Free Programs 41
4.1 Baseline Language . 41
4.2 Predication . 42
4.3 Rewriting System . 44

4.3.1 Control Flow . 44
4.3.2 Phi Functions . 45
4.3.3 Memory Operations . 46
4.3.4 Final Example . 48

4.4 Interprocedural Transformation . 50

5 From PCFL to SCE 52
5.1 Partial Control-Flow Linearization . 52

5.1.1 Properties of PCFL . 56
5.2 Taint Analysis . 57

5.3 Predication . 58
5.3.1 Accounting for Time . 58
5.3.2 Active Paths . 60

5.4 Rewriting System . 60
5.4.1 Control Flow . 61
5.4.2 Phi Functions . 64
5.4.3 Memory Operations . 66
5.4.4 Final Example . 69

5.5 Correctness . 71
5.5.1 Isochronification Preserves Semantics 71
5.5.2 Isochronification Implements Refinement 74

6 Evaluation 76
6.1 RQ1: Size of Transformed Code . 78
6.2 RQ2: Transformation Time . 79
6.3 RQ3: Performance of Transformed Code 80
6.4 RQ4: Security Evaluation . 81
6.5 RQ5: Comparison with a Domain-Specific Language 83

7 Conclusion 85

Bibliography 87

21

Chapter 1

Introduction

A program is said to be isochronous if, for any fixed instance of its public inputs, its
running time remains the same regardless of its secret (sensitive) inputs. Isochronicity is
characterized by two properties: data and operation invariance (see §1.3). Isochronous
programs do not leak time-related information [Kocher, 1996]; therefore, isochronicity
is an essential property in implementations of cryptographic routines [Almeida et al.,
2016; Almeida et al., 2020; Barthe et al., 2019]. In view of this importance, much work
has been done to detect time-variant code [Reparaz et al., 2017; Almeida et al., 2016;
Ngo et al., 2017; Barthe et al., 2019; Guarnieri et al., 2020] or to remove sources of time
variance [Agat, 2000; Almeida et al., 2020; Fell et al., 2019; Borrello et al., 2021; Cleemput
et al., 2012; Van Cleemput et al., 2020; Gruss et al., 2017; Tizpaz-Niari et al., 2019;
Chattopadhyay and Roychoudhury, 2018; Wu et al., 2018]. And yet, the implementation
of a static code transformation technique capable of removing time-based side channels
from programs containing general loops remains an elusive endeavor.

1.1 The Breakthroughs of 2021

Current methodologies to remove time-based side channels from a program consist
in linearizing its control-flow graph. Linearization removes branches from a program.
Until recently, the state-of-the-art approach to perform linearization was due to Wu et al.
[2018] (SC-Eliminator). In 2021, we proposed Lif as an improvement of Wu et al.’s
transformation, to prevent it from introducing out-of-bounds accesses into the program
[Soares and Pereira, 2021]. Both our and Wu et al.’s technique are fully static: they do
not require executing a program to change it. However, they cannot deal with programs
containing loops, unless these loops have bounds known at compilation time.

Still in 2021, Borrello et al. [2021] introduced Constantine as a dynamic alter-
native to Lif’s static approach. Borrello et al. execute the program and use runtime
information like memory addresses and the outcome of branches to linearize the part of

1. Introduction 22

the code that could be covered during the execution. Borrello et al.’s strategy handles
programs with general loops. To the best of our knowledge, it does not insert invalid
memory accesses into programs. However, it also has limitations, the most serious being
due to Rice’s Theorem [Rice, 1953]: it is undecidable to find inputs to exercise specific
parts of a program’s code. Indeed, our personal experience with Constantine is that it
is hard to find inputs that reach particular branches that should be linearized. In this
thesis, we show that it is possible to handle programs with general loops with a static
approach, hence joining the benefits from Lif and Constantine’s transformations.

1.2 Enter Partial Control-Flow Linearization

In 2018, Moll and Hack [2018] introduced partial control-flow linearization (PCFL):
a code-optimization technique to speed up programs in the Single-Instruction, Multiple-
Data (SIMD) model [Flynn, 1972]. A SIMD program is processed by multiple threads
running in lockstep. The hardware fetches one instruction at a time, which is forwarded to
all the threads. Thus, these threads process the same instruction simultaneously, albeit on
different data. In a SIMD program, some branches can be proven to be uniform, meaning
that they always yield the same outcome for the threads that execute them together. The
other branches are called divergent.

Moll and Hack’s PCFL removes the divergent branches from the program, lineariz-
ing the blocks controlled by said branches. The transformation keeps the uniform branches
unchanged. In principle, PCFL bears as much importance to side-channel resistance as
the fact that more kangaroos live in Australia than people in Uruguay.1 However, replace
“uniform” with public and “divergent” with secret, and voilà: we have a beautiful algo-
rithm to produce isochronous programs! To make this thesis self-contained, we present
Moll and Hack’s PCFL algorithm in §5.1. Then, in §5.4.1 we show how we adopted PCFL
in the context of software security.

1https://twitter.com/redditcfb/status/1355288917558390786

https://twitter.com/redditcfb/status/1355288917558390786

1. Introduction 23

1.3 The Contributions of this Work

One effective countermeasure to prevent time-based side channels is to write pro-
grams that do not perform secret-dependent branches and memory accesses, thus ensuring
time invariance. Such paradigm is known as Constant-Time Programming and is adopted
by several popular cryptographic libraries. Nevertheless, it requires much attention and
knowledge to write constant-time programs by hand, since minor mistakes could be the
source of vulnerabilities. In other words, such a manual job is error prone and therefore
an automated method is preferable.

This thesis shows how to adapt partial control-flow linearization to make programs
isochronous, thus ensuring Cryptographic Constant-Time (CCT) behavior [Barthe et al.,
2021, §2.3]. To use our code transformation, users must indicate which program inputs are
secret. No more interventions are necessary. The generated code achieves the following
properties, which guarantee standard notions [Rafnsson et al., 2017, §4] of confidentiality
and non-interference:

Operation Invariance: Given an arbitrary instance of the public inputs, every pos-
sible execution of the transformed program processes the same sequence of
addresses in the instruction cache, independent of the secret inputs.

Data Invariance: Given an arbitrary instance of the public inputs, every possible
execution of the transformed program processes the same sequence of reads
and writes in the data cache, independent of the secret inputs — this holds
whenever the original program is publicly safe [Cauligi et al., 2019, §3.2.3].

Memory Safety: The transformed program only contains out-of-bounds memory
accesses that already exist in the original program.

Termination: A loop in the transformed program only terminates due to public
information. A loop controlled only by secret data will not terminate.

Example 1.1 illustrates the concepts of operation and data invariance, while Ex-
ample 1.2 explains the issue of memory safety.

Example 1.1. Functions oFdF, oFdT, oTdF and oTdT (o = operation, d = data, F =
false, T = true), in Figure 1.1, compare an input g with a secret password pw.2 Even
though the three functions compute the very same thing, they behave quite differently.
Function oFdF, from Figure 1.1 (a), returns immediately whenever g[i] != pw[i]. Thus,

2The code depicted in Figure 1.1 is merely used as an example throughout this thesis. Bear in mind
that passwords should never be stored as plain texts.

1. Introduction 24

1 // g (gue s s) i s p u b l i c .
2 // pw (password) i s s e c r e t .
3 // n i s p u b l i c .
4 i n t oFdF (i n t ∗g , i n t ∗pw , i n t n) {
5 f o r (i n t i = 0 ; i < n ; i++)
6 i f (g [i] != pw [i]) return 0 ;
7 return 1 ;
8 }

1 // g (gue s s) i s p u b l i c .
2 // pw (password) i s s e c r e t .
3 // n i s p u b l i c .
4 i n t oFdT(i n t ∗g , i n t ∗pw , i n t n) {
5 i n t r = 1 ;
6 f o r (i n t i = 0 ; i < n ; i++)
7 i f (g [i] != pw [i]) r = 0 ;
8 return r ;
9 }

1 // g (gue s s) i s p u b l i c .
2 // pw (password) i s s e c r e t .
3 // n i s p u b l i c .
4 i n t oTdF(i n t ∗g , i n t ∗pw , i n t ∗ t , i n t n) {
5 i n t r = 0 ;
6 f o r (i n t i = 0 ; i < n ; i++) {
7 // s e c r e t −dependent i ndex : pw [i]
8 r |= t [g [i]] != t [pw [i]] ;
9 }

10 return r ? 0 : 1 ;
11 }

1 // g (gue s s) i s p u b l i c .
2 // pw (password) i s s e c r e t .
3 // n i s p u b l i c .
4 i n t oTdT(i n t ∗g , i n t ∗pw , i n t n) {
5 i n t r = 0 ;
6 f o r (i n t i = 0 ; i < n ; i++)
7 r |= g [i] != pw [i] ;
8 return r ? 0 : 1 ;
9 }

O∧D

a

O∧D

b

O∧D

c

O∧D

d

Figure 1.1. Functions oFdF, oFdT, oTdF and oTdT compare the user’s guess g
with a secret password pw. (a) oFdF returns immediately whenever two elements
are different; as such, it is neither operation nor data invariant. (b) oFdT always
performs the same number of comparisons; hence, it is data invariant, but it still
is not operation invariant. (c) oTdF is operation invariant; however, it has indirect
accesses through a table t, using secret-dependent indices (pw[i]), and thus it is
not data invariant. (d) oTdT always performs the same sequence of instructions and
memory accesses; thus, it is both operation and data invariant.

1. Introduction 25

oFdF is neither operation nor data invariant. Procedure oFdT, on the other hand, is data
invariant. The loop seen at lines 6–7 of Figure 1.1 (b) always executes the same number of
iterations. Hence, the sequence of memory accesses is always the same, regardless of pw.
Nevertheless, oFdT is still not operation invariant, since the execution of the assignment
at line 7 depends on content of the array pw. Function oTdF, from Figure 1.1 (c), always
performs the same sequence of instructions and the same number of memory accesses;
however, some of these accesses rely on secret-dependent indices (pw[i]), implying that
oFdT is not data invariant. Finally, function oTdT, from Figure 1.1 (d), always executes
the same sequence of instructions and perform the same sequence of memory accesses,
independent of the secret input pw. Therefore, oTdT is both operation and data invariant.

Example 1.2. The program repair proposed by Wu et al. [2018] would transform func-
tion oFdF (Figure 1.1 (a)) into code that is similar to function oTdT (Figure 1.1 (c)). The
latter is both data and operation invariant; hence, it is isochronous. However, Wu et al.’s
transformation is not memory safe, i.e. the repaired version migh access unallocated mem-
ory even if such bad accesses do not occur in the original code with the same inputs. For
instance, calling oTdT with g = [0], pw = [1] and n > 1 would incur in invalid accesses to
a[i] and b[i], i > 0, a fault that would never happen in function oFdF due to the early
return at line 6.

1.3.1 Threat Model

We adopt a string-of-addresses threat model assumed by previous work [Cauligi
et al., 2019; Soares and Pereira, 2021]. We assume an attacker who can observe the
sequence of addresses accessed by a program in the instruction and data caches. In other
words, the attacker has access to the trace formed by the memory addresses read or
written by a program, including the address of the instructions fetched during execution.
This model delivers stronger guarantees than the model typically adopted in cache-based
timing attacks. The hit-miss model considers an attacker who has access to the sequence
of cache hits and misses [Borrello et al., 2021; Wu et al., 2018; Zhang et al., 2022], assuming
a deterministic timing model [Balliu et al., 2014, §3].

Both models, string-of-addresses and hit-miss, follow the general execution-trace
model discussed by Zdancewic and Myers [2001, §2]; however, the string-of-addresses
model includes less programs. As an example, any program that contains a memory
access indexed by secret information, e.g. a[secret[i]], will yield a different string of
accesses in the data cache, thus leaking information even if only cache hits are verified in
practice. In the words of Cauligi et al. [2019], these programs are not publicly safe. In

1. Introduction 26

fact, an indirect comparison between these two models is available in the work of Zhang
et al. [2022]. Zhang et al. compares two tools, CAPE and Lif. The former uses the hit-miss
model; the latter, the string-of-addresses model. Out of five benchmarks transformed by
CAPE, Lif could secure only one.

1.3.2 Comparison with Previous Work

As we shall see in §5, programs produced by our transformation still might have
branches, as long as these branches are not controlled by sensitive information. Further-
more, our technique is capable of handling general loops. Therefore, we expand previous
work in multiple ways:

1. Static Generality: In contrast to previous work [Soares and Pereira, 2021; Wu et al.,
2018], our transformation handles programs with loops, even if these loops cannot
be fully unrolled (i.e. are unbounded).

2. Static Efficiency: In contrast to previous static transformations [Soares and Pereira,
2021; Wu et al., 2018], we preserve branches controlled by public information, avoid-
ing the unnecessary execution of unreachable code.

3. Decidability: Our transformation is fully static; hence, in contrast to a dynamic tool
like Constantine [Borrello et al., 2021], it does not require test cases that exercise
all the branches of a program.

4. Convenience: In contrast to a domain-specific language such as FaCT [Cauligi et al.,
2019], programmers can write memory-safe code directly in general-programming
languages like C and still obtain isochronicity.

1.4 Summary of Results

We implemented our ideas in LLVM 13.0 [Lattner and Adve, 2004]. Chapter 6
compares these implementations with Constantine, SC-Eliminator and FaCT in regard
to 13 programs whose inputs can be split into public and secret data. Section 6.4 certifies
that the transformed programs meet the guarantees previously enumerated, i.e. operation

1. Introduction 27

invariance in general, data invariance for publicly-safe programs, memory safety and ter-
mination. Table 1.1 summarizes results reported in §6 for the nine benchmarks that all
the tools can handle. Lif refers to the loop-free approach described in §4, whereas PCFL
corresponds to our implementation of Moll and Hack’s partial control-flow linearization,
presented in §5. Lif and SC-Eliminator cannot handle three benchmarks due to un-
bounded loops. These two tools and Constantine failed to produce correct output for
another one. Notice that code size for Lif and SC-Eliminator is much bigger because
these tools require that loops are fully unrolled.

Table 1.1. Summary of results from §6 with regard to the nine benchmarks that
all the tools can handle. Numbers are arithmetic means. Measurements happen
after programs are transformed and then optimized with LLVM opt -O3. Original
refers to the benchmark without any transformation. PCFL and Lif correspond to
our implementations. CTT refers to Constantine; SC refers to SC-Eliminator. These
two tools can do control- and data-flow linearization. Hence, -Orig refers to their
original implementations, and -CFL refers to the implementation with only control-
flow linearization. Our approaches only do control-flow linearization, but achieves
data invariance for publicly-safe programs.

Tool Original PCFL Lif CTT-Orig CTT-CFL SC-Orig SC-CFL

Size (#LLVM instrs.) 330.78 337.00 15,342.11 464.67 365.89 10,863.56 8,444.89

Running time (µs) 3.23 5.21 12.09 14.94 6.27 5.19 4.60

Linearization time (ms) 33.49 271.61 2,045.22 65.19 2,697.06 2,149.28

1.5 Publications

As mentioned in §1.1, we published, in 2021, at the International Symposium on
Code Generation and Optimization (CGO 2021), an initial attempt to make programs
isochronous statically [Soares and Pereira, 2021]. Such transformation is the topic of §4.
In §5, we extend this transformation in non-trivial ways: we adapt Moll and Hack [2018]’s
partial control-flow linearization to the context of side-channel elimination, and we aug-
ment the static analysis used for predication, initially described in §4.2, to handle general
loops. These extensions constitute a manuscript that is currently under review [Soares
et al., 2022]. Programs produced by the technique developed in §5 may still have branches,
as long as these branches are not controlled by sensitive data; the same is not true for the
more restrict, loop-free approach presented in §4.

28

Chapter 2

Literature Review

This work draws its contributions from two different communities: high-performance com-
puting and software security. Concerning the former, this work is related to research about
control-flow linearization. Concerning the latter, it is related to the static elimination of
side channels. In this chapter, we explain how this thesis relates to previous contribu-
tions in these two domains. We begin by discussing, in §2.1, about partial control-flow
linearization. Then, in §2.2, we move to the topic of side channels.

2.1 Partial Control-Flow Linearization

In its essence, Moll and Hack [2018]’s algorithm for control-flow linearization is an
efficient way to support predication, inasmuch as it spares uniform branches from being
predicated. Predication is, essentially, a technique to convert control dependencies into
data dependencies. To the best of our knowledge, the first description of a systematic way
to perform predication is due to Allen et al. [1983], although the problem had already
been described in earlier work [Towle, 1976; Wolfe, 1978]. After Allen et al.’s original
foray in the field, predication has been refined and expanded in many different ways, and
today is standard textbook material [Clements, 2013]. In §4.2, we define a static analysis
to compute the conditions that dictate which operations of a program shall be executed,
which we then use to predicate instructions. Later on, in §5.3, we augment such an static
analysis to handle general (unbounded) loops.

The fact that control-flow linearization was already a concern almost 40 years ago
makes it surprising that Moll and Hack’s algorithm took so long to emerge. Compared to
previous work, PCFL enjoys a number of advantages. First, when compared to Ferrante
and Mace [1985]’s well-known linearization approach, Moll and Hack’s algorithm has
better complexity (linear vs log-linear). Second, it is substantially simpler than previous
approaches of similar service, such as Karrenberg and Hack [2012]’s. In the words of Moll
and Hack: “Karrenberg and Hack’s method spans over five algorithm listings”, whereas the

2. Literature Review 29

PCFL routine is fully described by the 34 lines of Python in Figure 5.2. Finally, PCFL
handles unstructured control flows, in contrast to heuristics used in practice [Moreira
et al., 2017] by the Intel SPMD Compiler, for instance.

Nevertheless, we emphasize that this project is not about the design of a partial
control-flow linearization approach. We reuse Moll and Hack’s algorithm almost without
modifications. Our changes in the algorithm will be described in §5.4.1. There exists only
one important difference between Moll and Hack’s implementation and ours, which is a
consequence of the different purposes that we have when using PCFL. In Moll and Hack’s
context, loops only terminate when all threads exit it; thus, the linearized loop contains
only one exit block, at its end. Moll and Hack add phi functions to identify through which
exit each thread left the loop. This approach is similar to what Constantine does: it
computes an upper bound for the loop and forces execution up to this trip count. In our
case, a loop can have multiple exits: indeed, any exit that is only controlled by public
data will be left untouched by our transformation.

2.2 Side Channels

Timing attacks became the focus of much research during the nineties [Dhem et al.,
1998; Kocher, 1996; Kocher et al., 1999; Wray, 1992]. However, the problem has been
known before [Singel, 1976]. The literature contains many examples of both detection
and defense mechanisms against such attacks. We thus shall split the discussion between
these two fields of research: we first present, in §2.2.1, a few projects about the detection
of side channels, and then, in §2.2.2, we explain how this work relates to previous side-
channel mitigation techniques. We close this section by talking about the preservation of
the constant-time property, which standard compiler optimizations might break — this
relates to the concept of refinement from the Quantitative Information Flow theory [Alvim
et al., 2020]; for more details, see §3.2.

2.2.1 Detection of Side Channels

Most of the literature concerning side channels refer to their identification, not
to their elimination. For instance, Rodrigues et al. [2016] rely on the properties of the
Static Single Assignment form to design an efficient detection method that operates on

2. Literature Review 30

the LLVM intermediate representation. Rodrigues et al. improve on the concept of control
dependencies from Ferrante et al. [1987] by proposing a different approach that avoids
Ferrante et al.’s worst case: O(|I| × |E|) dependency edges, where I are the instructions
in a program and E are the edges in its control-flow graph. In addition, Rodrigues
et al. provide an implementation of Hunt and Sands [2006]’s flow-sensitive system of
security types, using their proposed notion of control dependencies. Rodrigues et al.’s
work also has a practical contribution: FlowTracker is an LLVM-based tool that uses
their implementation of Hunt and Sands’s type system to detect time-based side channels.
As we shall see in §5.2, we use Rodrigues et al.’s information analysis to label variables
as either tainted or non-tainted.

Around the same time (2016–17), Almeida et al. [2016] and Reparaz et al. [2017]
introduced techniques to determine whether a code runs in constant time or not. Ngo et al.
[2017] described a type system for verifying that a code correctly implements constant-
resource behavior. More recently, Guarnieri et al. [2020] introduced a framework for
specifying hardware-software contracts that assert which program executions an adversary
can distinguish. A CPU satisfies a contract if, whenever two program executions agree
on all observations, they are guaranteed to be indistinguishable by the adversary at the
microarchitectural level.

2.2.2 Mitigation of Side Channels

There exists a wide range of approaches to mitigate information leakage due to
time-based side channels [Ngo et al., 2017; Agat, 2000; Tizpaz-Niari et al., 2019; Wu
et al., 2018; Rane et al., 2015; Cauligi et al., 2019; Soares and Pereira, 2021; Borrello
et al., 2021]. The seminal work in the field is due to Johan Agat, who has proposed
a type-directed transformation to repair programs. Agat’s technique, and several of its
sucessors, work by equalizing the time spent on distinct branches within a program.
These approaches essentially seek for a trade-off between the overhead imposed upon the
transformed program and the amount of leakage that they mitigate. For instance, Tizpaz-
Niari et al. [2019] explicitly guarantee a user-specified maximum acceptable performance
overhead. However, as stated by Wu et al., such methods deliver weak guarantees, due
to the presence of hidden states at microarchitectural levels and related performance
optimizations inside modern CPUs.

This thesis is concerned with the so-called white-box mitigations, which require
intervening in the software. For an overview of black-box approaches, such as defenses
implemented at the operating-system level, we refer the reader to the comprehensive dis-

2. Literature Review 31

cussion presented by Cock et al. [2014]. In contrast to previous work that only attempt
to balance branches, Wu et al.’s approach consists of linearizing conditional branches,
so that every instruction in the influence region of a conditional branch (see Def. 3.6)
executes regardless of the secret inputs. Wu et al.’s method thus ensures operation in-
variance. Furthermore, Wu et al. also discuss the adoption of preloading mechanisms to
mitigate cache-based leaks. They proposed a must-hit static analysis to identify whether
a memory element is definitely in the cache or not, thus allowing to optimize the insertion
of preloading code. Nonetheless, preloading is architecture dependent, for the approach
is customized to the dimensions of the data cache.

We believe that Rane et al. [2015]’s work might provide equally strong guarantees as
Wu et al.’s, yet such guarantees are not explicitly stated. Rane et al.’s approach consists of
introducing decoy paths, so that the adversary’s view of the program execution becomes
the same for different inputs — i.e. the transformed program is operation invariant.
Nevertheless, these methods still suffer from a number of shortcomings that justify the
developments in this thesis. In particular, albeit both Wu et al. and Rane et al. provide
arguments about the absence of side channels, they do not discuss the issue of memory
safety (§1.3), a problem present in both techniques.

In 2019, Cauligi et al. [2019] proposed a domain-specific language called FaCT,
whose focus is to write constant-time cryptographic code. The FaCT compiler uses a se-
crecy type system to automatically transform potentially timing-sensitive high-level code
into LLVM bitcode that satisfies the constant-time constraint. FaCT is designed to be
embedded into existing cryptographic projects, instead of being used as a standalone
language. FaCT programs are, by design, publicly safe, a concept that we revisit in Def-
inition 5.5 (§5.4.3). In the words of Cauligi et al.: “for a program to be amenable to
constant-time compilation, the source must be publicly safe: it must be free from buffer
overflows and undefined behavior using only public-visible information, i.e. the code must
be safe even after removal of secret-dependent control-flow”. The notion of public safety is
embedded into FaCT’s type system. As we shall see in §5.4.3, if a program is publicly safe,
then the program resulted from our transformation will be data invariant (Theorem 5.3).
In addition, our approach always guarantees operation invariance (Theorem 5.2). There-
fore, for publicly-safe codes, the programs resulted from our transformation meet the same
guarantees delivered by the FaCT compiler.

In 2021, we published a paper proposing a static code transformation that guaran-
tees operation invariance while still ensuring memory safety; that is, the transformation
does not add any out-of-bounds accesses to the repaired program that do not occur in
the original version [Soares and Pereira, 2021]. This method, however, only works for
programs whose loops have bounds known at compilation time (i.e. are fully unrollable).
As mentioned in §1.5, such a technique is the topic of §4. In §5, we improve our loop-free
transformation to deal with unbounded loops. When dealing with loop-free programs

2. Literature Review 32

where all branches are tainted, these techniques (§4 and §5) are equivalent.
Still in 2021, Borrello et al. [2021] proposed an approach to eliminate time-based

side channels that combine static and dynamic analyses. Borrello et al.’s work is more
general than previous work [Wu et al., 2018; Soares and Pereira, 2021], in the sense
that it is capable of transforming unbounded loops. Loops are linearized just-in-time by
replacing the normal trip count of a loop with a special induction variable that dictates
how many times that loop should execute. This kind of transformation requires loop
profiling in order to identify the number of iterations that the loop performs, which implies
an important limitation: it is undecidable to find inputs to exercise specific parts of a
program’s code (Rice’s Theorem [Rice, 1953]). In addition to control-flow linearization,
Borrello et al. also discuss data-flow linearization, which consists of “obliviously accessing
all the locations that the original program can possibly reference for any initial input”. To
make data-flow linearization practical, they conduct a context-sensitive points-to analysis,
which requires agressive function cloning. To the best of our knowledge, Borrello et al.’s
code transformation is memory safe. It is worth noting that, even though we discuss the
property of data invariance throughout this thesis, the transformation we are proposing is
focused on operation-based leaks; that is, we do not propose any specific kind of technique
to protect against cache-based attacks.

2.2.3 Constant-Time Preservation

Implementing a constant-time policy, either by hand or through means of an au-
tomated method, does not guarantee that such a policy will remain valid on the binary
level. This is because compilers typically apply several transformations onto the input
code and some of them might destroy properties that are present in previous phases of
the compilation [Barthe et al., 2018; Deng and Namjoshi, 2017, 2018; Besson et al., 2019].
In the context of information leak, [Barthe et al., 2018] proposed a general method for
proving that a compiler optimization preserves the constant-time property of a program.
For that, they defined the notion of constant-time simulation, which adapts the notion of
simulation from compiler verification [Leroy, 2009]. Barthe et al. [2019] then presented
a modified version of CompCert [Leroy, 2009] — a formally-verified C compiler — that
succeeds in preserving the constant-time policy during compilation. Nevertheless, Barthe
et al.’s verification method does not account for quantitative analysis of side-channel
leakage; rather, it deals only with equality of leakage.

Besson et al. [2019] propose the notion of Information-Flow Preserving code trans-
formation that aims at ensuring that a target program does not leak more information

2. Literature Review 33

than the corresponding source code. They consider an attacker who is granted physical
memory access at specific observation points. Furthermore, the attacker is parameter-
ized by the amount of information he is allowed to read: an attacker observing n bits
of information during the execution of a target (transformed) program does not get an
advantage over an attacker observing the same amount of bits during the execution of
the source program. More recently, Barthe et al. [2021] proposed the notion of structured
leakage, which differs from the usual modeling of leakage as sequence of observations in the
sense that it is aligned with the operational semantics of programs. Similarly to Barthe
et al. [2019], Barthe et al. [2021] demonstrated the application of structured leakage in
the context of the Cryptographic Constant-Time property.

34

Chapter 3

Preliminaries

In this chapter, we introduce important notions that we shall be referring to throughout
this thesis. In §3.1, we define standard concepts related to (control-flow) graphs, such
as dominance and post dominance, control and data dependency, and natural loops. We
close this chapter by introducing, in §3.2, the theory of Quantitative Information Flow
(QIF). QIF is an emerging field that aims to explain what information leakage is and how
it can be assessed quantitatively [Alvim et al., 2020]. As such, it is strongly correlated to
the context of side-channel resistance, our topic of interest.

3.1 Graph Definitions

Partial Control-Flow Linearization [Moll and Hack, 2018] works on programs con-
taining loops; however, it requires said loops to be natural. Although a natural loop is a
well-established concept [Appel, 1997], Definition 3.1 revisits it for the sake of complete-
ness. Throughout this thesis, we shall adopt the same terminology used in the LLVM
documentation1 when referring to natural loops.

Definition 3.1 (Natural Loop). A control-flow Graph (CFG) is a directed graph with
an entry node start. If G is a CFG, then a loop L ⊆ G is a strongly connected subgraph
of G. L is called natural if it contains a header h such that every path from start to any
node v ∈ L goes through h.

As a consequence of Definition 3.1, the header dominates all nodes in the loop (see
Def. 3.4). Most loops in programs will be natural: they are produced by statements like
while, do-while, for and foreach. The creation of non-natural loops usually requires
abusing the go-to statement. The original description of PCFL also requires loops to have
unique latches (see Definition 3.2). This requirement can be met for any program via a
standard compiler transformation, which we shall not explain further.

1https://llvm.org/docs/LoopTerminology.html

https://llvm.org/docs/LoopTerminology.html

3. Preliminaries 35

Definition 3.2 (Loop Terminology). A Forward Edge is an edge from a node outside the
loop to the loop header. A Back Edge is an edge from a node inside the loop to the loop
header. A Latch is the source of a back edge. An Exiting Edge is an edge from inside
the loop to a node outside it. The source of an exiting edge is called an Exiting Block.
Similarly, the destination of an exiting edge is called an Exit Block.

Definition 3.3 introduces Ferrante et al. [1987]’s notion of data and control depen-
dency. We rely on the concept of dependencies to determine whether a variable is tainted
or not (Definition 5.2). Furthermore, both data and control dependency are pre-requisites
for the definition of two properties: shadow and public safety (Def. 5.5).

Definition 3.3 (Data & Control Dependency). Following Ferrante et al. [1987], we say
that variable y is data dependent on variable x if y is assigned in an instruction that uses
x. Similarly, we say that a variable x is control dependent on a variable p if the value
assigned to x depends on the outcome of a branch whose condition uses p.

Dominance and post dominance are important concepts in compiler theory [Allen,
1970; Ferrante et al., 1987; Cytron et al., 1989], and as such will be extensively mentioned
throughout this text. Therefore, for the sake of completeness, Definitions 3.4 and 3.5
revisit them. Definition 3.6 relies on the notion of post dominance to define the influence
region of a node. Influence regions will be used later on, in §5.4.3, to determine which
instructions of a program must be rewritten.

Definition 3.4 (Dominance). Given a directed graph G with a unique root vertex s, we
say that vertex u dominates vertex v if every path from s to v must go through u. Node
u is the immediate dominator of v if, and only if, u strictly dominates v (i.e. v ̸= u) and,
for any other u′ that dominates v, either u′ dominates u or u′ = u.

s u v
...

...

Figure 3.1. Dominance relation: every path from s — the unique start node — to
node v must go through node u; that is, u dominates v.

Definition 3.5 (Post Dominance). Given a directed graph G with a unique exit vertex
d, we say that v post-dominates vertex u if every path from u to d must go through v.
Node v is the immediate post dominator of u if, and only if, v strictly post-dominates u

and, for any other v′ that post-dominates u, either v′ post-dominates v or v′ = v.

3. Preliminaries 36

u v d
...

...

Figure 3.2. Post-dominance relation: every path from node u to d — the unique
exit node — must go through node v; that is, v post-dominates u.

Definition 3.6 (Influence Region). The influence region of a node u is the set of all nodes
in paths from u to its immediate post dominator v, excluding u and v.

u v
...

Figure 3.3. The influence region of node u is composed by all node in paths from
u to its post dominator v; that is, all nodes in the colored region.

As we shall see in §5.1, Moll and Hack [2018]’s partial control-flow algorithm de-
pends on a special ordering called compact topological ordering. In short, the compact
topological ordering of a graph is a topological sort in which all vertices are compact
with respect to the dominance sets and the loops of the said graph (see Definition 5.1).
Definition 3.7 revisits the notion of a topological sort.

Definition 3.7 (Topological Sort [Cormen et al., 2009]). A topological sort of a directed
acyclic graph G is a linear ordering of its vertices such that, for every edge u → v in G,
u comes before v in the said ordering.

3.2 Quantitative Information Flow

The theory of Quantitative Information Flow (QIF) aims to explain what informa-
tion leakage is, how it can be estimated quantitatively and how to construct systems that
satisfy information-flow guarantees [Alvim et al., 2020, §1]. Secrecy, in this context, is
defined with regard to probabilities. That is, the knowledge an adversary has about some
secret X is specified by a probability distribution π over X , where πx is the probability of
each possible value x of X . QIF models systems in terms of information-theoretic chan-
nels, which are probabilistic functions. A probabilistic system is modeled as a channel
C : X → DY , where DY is the set of all distributions on Y . A special case is a determin-
istic channel, which maps each possible input to a single output; in this case, the channel
can be described simply as C : X → Y [Alvim et al., 2020, §4].

3. Preliminaries 37

Vulnerability. There are multiple ways to quantify the vulnerability associated with a
secret X. One example is the Bayes vulnerability, which corresponds to the maximum
probability that an adversary has to guess the value of X in one try. The Bayes vulnera-
bility V1(π) — where the subscript “1” is chosen to reflect the “one try” aspect — is thus
defined as V1(π) = maxx∈X πx. Nonetheless, the adversary is not necessarily restricted to
a single try; in fact, the operational scenarios are infinite. QIF addresses this multiplicity
of possible scenarios by parameterizing vulnerability with a gain function g that mod-
els the actions that the adversary can take, thus introducing a family of g-vulnerability
measures Vg(π) [Alvim et al., 2020, §§1,3].

Example 3.1. Suppose we roll a pair of fair dice: there are a total of 36 combinations,
each with probability 1

36
— i.e. π is a uniform distribution. This distribution π corre-

sponds to the knowledge that the adversary has prior to rolling the dice. Suppose, in
addition, that we only make available the sum of the values of each die. The space Y of
possible outputs is {2, . . . , 12}. If the result is, for instance, 4, the adversary can conclude
that the only possible pairs are (1, 3), (2, 2), and (3, 1), which gives a posterior uniform
distribution that assigns the probability 1

3
to each pair. If, on the other hand, the adver-

sary observed the result 2, then there is only one possible pair (2, 2) with probability 1. In
other words, by observing the result of a system, the adversary can “update” their knowl-
edge. Each output y ∈ Y of a channel C gives rise to a posterior distribution, meaning
that the execution of a system maps a prior π into a distribution on posterior distribu-
tions, called as a hyper-distribution and denoted by [π ▷C]. The posterior g-vulnerability
is denoted by Vg[π ▷ C] [Alvim et al., 2020, §§1, 4.3, 5.1].

From a security point of view, Example 3.1 can be seen as an adversary that wants
to discover a two-digit password [Alvim et al., 2020, §1.1.1]. In our context, however, we
are interested in adversaries that try to obtain sensitive data by observing information
that flows through time-based side channels instead of the usual output of the system.
Consider, for example, functions oFdF and oTdT from, respectively, Figures 1.1 (a) and (d).
These two procedures implement a password checker. The first one is neither operation nor
data invariant, because the sequences of operations and memory accesses depend on the
value of the secret input pw. In contrast, the second is both operation and data invariant.
To illustrate, let n = 1, g = [0] and |pw| = 1. Furthermore, let, under such assumptions,
An=1, g=[0] and Dn=1, g=[0] be the deterministic channels that correspond to the trace of
operations relative to the execution of, respectively, oFdF and oTdT. Example 3.2 shows
the Bayes vulnerability of the two channels, assuming a uniform prior distribution π for
the secret input pw = [n], 0 ≤ n ≤ 9.

Example 3.2. The prior Bayes vulnerability is the maximum of the prior distribution π;
that is, V1(π) =

1
10

. Figures 3.4 (a) and (b) show the partition induced by, respectively,
channels An=1, g=[0] and Dn=1, g=[0]. Channel An=1, g=[0] maps the inputs pw = [0] and

3. Preliminaries 38

pw = [i], 1 ≤ i ≤ 9, to two distinct traces, each one with probability 1 (recall that the
channels are deterministic). Assuming that the adversary observed the trace relative to
pw = [0], they now know — with probability 1 — the secret input. The probability of
observing that trace is 1

10
, given that An=1, g=[0] maps only one input to such a trace. On

the other hand, for pw = [i], 1 ≤ i ≤ 9, the posterior distribution assigns a probability
of 1

9
to each possible i, and the probability of observing the corresponding trace is 9

10
.

The posterior Bayes vulnerability is the expected value of the Bayes vulnerability over
the hyper-distribution, i.e.

V1

[
π ▷ An=1, g=[0]

]
=

1

10
V1

(
1

1

)
+

9

10
V1

(
1

9
, . . . ,

1

9

)
=

1

10
+

1

10

=
1

5

> V1(π).

Notice that the posterior vulnerability is larger than the prior. This reflects the fact
that the result of channel An=1, g=[0] helps the adversary to choose the best action for
them. Let us now analyze channel Dn=1, g=[0]. Unlike channel An=1, g=[0], Dn=1, g=[0] maps
every possible input pw to a unique trace. Such a trace is observed with probability 1,
and the posterior distribution is a uniform distribution (1

10
, . . . , 1

10
). Therefore, the Bayes

vulnerability of channel Dn=1, g=[0] is

V1

[
π ▷ Dn=1, g=[0]

]
= 1V1

(
1

10
, . . . ,

1

10

)
=

1

10

= V1(π),

which, as demonstrated, is exactly the prior Bayes vulnerability V1(π). That is, the
adversary cannot increase their knowledge by observing the output of Dn=1, g=[0].

Refinement. In this work, we are interested in deterministic programs. Thus, we shall
focus on deterministic channels. A crucial constraint that we wish our transformation
to satisfy is that no program produced by our technique leaks more than its original
counterpart. This is the concept of refinement, and it is extensively described in Alvim
et al. [2020]. There are two important formulations of refinement: structural refinement,
which is how refinement is “implemented” by the developer, and testing refinement, which
corresponds to the customer’s point of view. The latter is harder to determine, but gives
more information with regard to security: as Definition 3.8 shows, its formulation relies

3. Preliminaries 39

i = 0
i < n
g[i] != pw[i]
i++
i < n
return 1

i = 0
i < n
g[i] != pw[i]
return 0

r = 0
i = 0
i < n
r |= g[i] != pw[i]
i++
i < n
return r ? 0 : 1

a b

Figure 3.4. (a) Partition induced by An=1, g=[0], which corresponds to function
oFdF from Figure 1.1 (a). (b) Partition induced by Dn=1, g=[0], which corresponds to
function oTdT from Figure 1.1 (b). Channel An=1, g=[0] is refined by Dn=1, g=[0], i.e.
Dn=1, g=[0] leaks no more than An=1, g=[0].

explicitly on g-vulnerability, indicating whether a channel is less vulnerable than another.
The former gives no information with regard to vulnerability, but it is easier to compute.
As such, we shall focus on the definition of structural refinement (deterministic case).
Nevertheless, as demonstrated by Alvim et al. [2020, Theorem 9.13], both formulations
are, in fact, exactly the same.

Definition 3.8 (Testing Refinement (⊑G) [Alvim et al., 2020, Def. 9.10]). Given channels
C and D, over the same input X , we say that C is testing-refined by D, written C ⊑G D,
if for any prior π and gain function g : GX we have Vg[π ▷ C] ≥ Vg[π ▷ D].

Any deterministic channel C : X → Y induces a partition on X , which is a set of
mutually disjoint subsets of X called cells. Two inputs x1, x2 ∈ X belong to the same cell
just when C(x1) = C(x2). As shown in Figure 3.4 and explored in Example 3.2, channels
An=1, g=[0] and Dn=1, g=[0] partition the space of the secret input pw into, respectively,
two and one cells. As Definition 3.9 demonstrates, we can use the partition induced by
deterministic channels to determine which of them is more secure. Example 3.3 applies
this notion to channels An=1, g=[0] and Dn=1, g=[0]. From now on, we write ⟨. . .⟩ to denote
ordered sequences.

Definition 3.9 (Structural Refinement (⊑◦) [Alvim et al., 2020, Def. 9.1]). Two deter-
ministic channels C and D on input X are said to be in the structural-refinement relation,
written C ⊑◦ D, just when the partition induced by D is coarser than that induced by
C, in that each of D’s cells is formed by merging one or more of C’s cells.

Example 3.3. An=1, g=[0] maps the input pw = [0] to the trace of operations

⟨i = 0, i < n, g[i] != pw[i], i++, i < n, return 1⟩.

3. Preliminaries 40

Similarly, channel An=1, g=[0] maps pw = [i], 1 ≤ i ≤ 9, to

⟨i = 0, i < n, g[i] != pw[i], return 0⟩.

In contrast, channel Dn=1, g=[0] maps every possible value of the secret input pw to

⟨r = 0, i = 0, i < n, r |= g[i] != pw[i], i++, i < n, return r ? 0 : 1⟩.

This single cell induced by Dn=1, g=[0] comprises all the inputs that An=1, g=[0] maps to two
distinct cells. Thus, we can think of the unique cell induced by Dn=1, g=[0] as the merge of
the two cells induced by An=1, g=[0], meaning that An=1, g=[0] ⊑◦ D

n=1, g=[0]. In other words,
function oTdT, from Figure 1.1 (d), is more secure than procedure oFdF, from Figure 1.1
(a), at least with respect to instruction-based leaks.

Extreme channels 0 and 1. There are two particular channels that deserve their own
discussion space: the channel that leaks nothing and the channel that leaks everything.
They are extreme opposites of each other. The former is denoted as channel 1: it is
the channel that preserves secrecy. In contrast, the latter is denoted as 0: it is the
channel that annihilates secrecy [Alvim et al., 2020, §4]. Ideally, our transformation
should produce a program corresponding to channel 1. This, however, is not always
possible. Nevertheless, as we shall see later in §5.4.3, there is a special class of programs
for which our transformation always guarantees the “no leakage” property; these are the
publicly safe programs (Definition 5.5).

41

Chapter 4

Transforming Loop-Free Programs

In this chapter, we will describe a transformation that targets loop-free programs. For
now, we shall consider every branch as tainted. Then, in §5, we will extend this trans-
formation to deal with general loops, using Moll and Hack [2018]’s partial control-flow
linearization. Therefore, we leave formal results on correctness and side-channel resistance
for §5. We start by introducing the baseline language that we shall use throughout the
entire thesis to explain our ideas (§4.1). Then, we present a static analysis to compute
the conditions that control the execution of each basic block (§4.2). In §4.3, we develop
the intraprocedural transformation framework. Finally, in §4.4, we discuss how to expand
this transformation to an interprocedural approach.

4.1 Baseline Language

Figure 4.1 shows the syntax of the toy language that will be used to explain our
ideas. In Figure 4.1, {} indicates zero or more occurrences, [] denotes optional terms,
id represents names of variables, n stands for numerals, and ℓ ranges over basic block
labels. In this thesis, we assume all programs to be in the Static Single Assignment
(SSA) form [Cytron et al., 1989].1 Thus, every variable has a single definition site and the
definition of a variable dominates all its uses. To meet these properties, the toy language
is equipped with phi functions — special instructions that join multiple definitions of
the same variable. In addition, the language provides a ctsel (constant-time selector)
operation, which is parameterized by a condition c, such that ctsel c, vt, vf ≡ vt if c ≡
true or vf otherwise.2 We represent stores with a left arrow instead of an equal sign to
distinguish them from simple assignments. For convenience, we write stores of the form
v[0] ← x as v ← x. We shall henceforth write inst @ ℓ to indicate that inst belongs to

1The SSA assumption is not a necessary condition to enable the code transformation described in this
thesis. Nevertheless, we assume it for convenience, because this format is adopted in the LLVM program
representation.

2We treat zero as false and any integer different from zero as true.

4. Transforming Loop-Free Programs 42

a block labeled by ℓ. Example 4.1 shows a program in our toy language.

Program ::= {BasicBlock }
BasicBlock ::= ℓ: {Assignment }Terminator

Assignment ::= id = public

| id = secret

| id = Expr

| id = id ′[′ Value ′]′

| id ′[′ Value ′]′ ← Expr

| id = phi ′[′ Expr, ℓ ′]′ { , ′[′ Expr, ℓ ′]′ }
| id = ctselValue,Value,Value

Terminator ::=br [Value, ℓ,] ℓ | halt
Expression ::=Value | unop Value | Value binop Value

Value ::= true | false | n | id

Figure 4.1. Syntax of the baseline language used throughout the thesis to design
the isochronous transformation.

Example 4.1. Figure 4.2 shows the implementation of function oFdF, from Figure 1.1 (a),
in our toy language. Function oFdF compares a user’s guess g with the secret password
pw. It immediately returns false if the test at line 6 evaluates to true; else, it returns
true, meaning that g equals pw. Hence, oFdF might leak the secret password due to the
non-constant behavior of the loop at lines 5–9.

4.2 Predication

The observable effects of a program are the set of state modifications that said
program carries out on the machine that it controls. In the context of this work, observable
effects are memory writes. If P is a program and Pl is the linearization of P , then we
want both P and Pl to have the same observable effects when given the same inputs —
in this chapter, we are not distinguishing public and secret inputs yet. To achieve this
property, we need to ensure that instructions of Pl only cause observable effects when their
counterparts in P do. For that, we resort to predication, a classic compiler transformation.
To predicate instructions, we rely on the notion of edge and block conditions. We start by
formalizing these concepts in Definition 4.1 for loop-free programs. Example 4.2 illustrates
these concepts.

4. Transforming Loop-Free Programs 43

begin: g = public
pw = secret
n = public
r = public
br header

header: i0 = phi [0, begin], [i1, latch]
p0 = i0 < n
br p0, body, ret.true

latch: i1 = i0 + 1
br header

body: g.i = g[i0]
pw.i = pw[i0]
p1 = g.i != pw.i
br p1, ret.false, latch

ret.false: br end

ret.true: br end

end: x = phi [false, ret.false], [true, ret.true]
r ← x
halt

Figure 4.2. Control-flow graph of the password comparison function oFdF seen in
Figure 1.1 (a), written in our baseline language.

Definition 4.1 (Block & Edge Conditions). The block condition BC (v) determines when
block v executes. The edge condition EC (u → v) determines when edge u → v is
traversed. The equations in Figure 4.3 define these mutual relations.

terminator(ℓ) = br p, ℓ′,_
EC (ℓ→ ℓ′) = BC (ℓ) ∧ p

terminator(ℓ) = br p,_, ℓ′

EC (ℓ→ ℓ′) = BC (ℓ) ∧ p

terminator(ℓ) = br ℓ′

EC (ℓ→ ℓ′) = BC (ℓ)

predecessors(ℓ) = {ℓ1, . . . , ℓn}

BC (ℓ) =
n∨

j=1

EC(ℓj → ℓ)

Figure 4.3. Recursive definitions of block and edge conditions. Function
predecessors(ℓ) gives all the blocks that are predecessors of block ℓ. Function
terminator(ℓ) returns the last instruction of the block labeled by ℓ (see Figure 4.1).

Example 4.2. Figure 4.4 shows the CFG of a simplified version of function oFdF seen in
Figure 4.2, with n = 2 and the loop unrolled. Each edge is labeled with its corresponding
edge condition. Block if.0 always executes; hence, its block condition is true. Block

4. Transforming Loop-Free Programs 44

if.1 executes whenever p0 is false; thus, its block condition is p0. The block condition
of end is the disjunction (p0 ∨ (p0 ∧ p1)) ∨ (p0 ∧ p1), which reduces to true, since the
last basic block end always executes.

begin: g = public
pw = secret
n = public
r = public
br if.0

if.0: g.0 = g[0]
pw.0 = pw[0]
p0 = g.0 != pw.0
br p0, ret.false, if.1

if.1: g.1 = g[1]
pw.1 = pw[1]
p1 = g.1 != pw.1
br p1, ret.false, end

ret.false: br end

end: x = phi [false, ret.false], [true, if.1]
r ← x
halt

true

p0

p0

p0
∧
p1

p0∧ p1

p0∨
(p0∧

p1)

Figure 4.4. CFG of function oFdF from Figure 4.2, with n = 2 and the loop
unrolled. Edges are labeled with edge conditions (Definition 4.1, Figure 4.3).

4.3 Rewriting System

4.3.1 Control Flow

To ensure operation invariance, a property that we formalize later in §5.4.1, we
must linearize the control-flow graph of the program. Recall that, in this chapter, we are
considering every branch as tainted. Thus, our linearization algorithm must delete all
branches of the program. Figure 4.5 shows the rule that we use to rewrite these branches.
Function rewritebr takes as input the original CFG G and a terminator br . . .@ ℓ, which
can be both conditional or unconditional, and replaces it with an unconditional branch

4. Transforming Loop-Free Programs 45

linking the basic block ℓ with its successor ℓ′ in the topological order (see Def. 3.7) of
the CFG. Notice that we are dealing with acyclic graphs; thus, we can safely rely on
topological sorting. Example 4.3 illustrates the linearization process.

topological(G) = ⟨ℓ1, . . . , ℓi, ℓj, . . . ℓn⟩ ℓi = ℓ

rewritebr(br . . .@ ℓ,G) = br ℓj

Figure 4.5. Transformation rule for linearizing the CFG of a program. Function
rewritebr replaces every branch with another branch whose target is the next node
in the topological order. Function topological(G) returns the topological sort (Defi-
nition 3.7) of the acyclic graph G.

Example 4.3. Figure 4.6 shows the linearization of the CFG early seen in Figure 4.4, con-
sidering the following topological sort of the basic blocks: begin, if.0, if.1, ret.false,
end. Notice that the conditional branches at blocks if.0 and if.1 no longer exist. In
other words, the linearized program will execute all instructions regardless of any input.
Therefore, the linearized code is operation invariant.

begin if.0

if.1ret.false

end

Figure 4.6. Linearization of the CFG from Figure 4.4, following the rewrite rule
defined in Figure 4.5. The topological sort adopted for this transformation was:
begin, if.0, if.1, ret.false, end.

4.3.2 Phi Functions

As discussed in §4.3.1, in this chapter we are linearizing programs entirely. There-
fore, in the linearized program Pl, every basic block has at most one predecessor, meaning
that every phi function with at least two incoming values become invalid. Hence, we must
rewrite them. Figure 4.7 defines the transformation rules that we use in this process. Ex-
ample 4.4 shows the application of such rules into the linearized version of the program
seen in Figure 4.4.

4. Transforming Loop-Free Programs 46

rewriteϕ(x = phi [e1, ℓ1], [e2, ℓ2]) = (x = ctselBC (ℓ1), e1, e2)

rewriteϕ(y = phi [e2, ℓ2], . . . , [en, ℓn]) = (y = ctsel . . .)

rewriteϕ(x = phi [e1, ℓ1], [e2, ℓ2], . . . , [en, ℓn]) = (x = ctselBC (ℓ1), e1, y)

Figure 4.7. Transformation rules used to rewrite phi functions, pre-PCFL. Function
rewriteϕ takes a phi node and returns a combination of ctsels that are equivalent
to that phi node. If the phi node has only one incoming value, it is equivalent to a
simple assignment, and thus do not need any modifications.

Example 4.4. The phi function at block g in Figure 4.8 (a) is rewritten in Figure 4.8 (b).
Notice that the original edges d→ g and f → g were deleted in (b). Hence, the phi node
became invalid. To fix that, the phi node was replaced by a combination of two ctsels
parameterized by the edge conditions of the original edges d → g and e → g, which in
Figure 4.8 are encoded as, respectively, variables ec.d_g and ec.e_g.

a

b c

d fe

g: x = phi [x1, d], [x2, e], [x3, f]

a

b c

d fe

g: x’ = ctsel ec.d_e, x2, x3
x = ctsel ec.d_g, x1, x’

a b

Figure 4.8. (a) CFG before linearization. (b) CFG after linearization, with the phi
function at block g rewritten according to Figure 4.7; variables ec.d_g and ec.e_g
store the edge condition of, respectively, edges d → g and e → g from the original
graph (see Definition 4.1, Figure 4.3).

4.3.3 Memory Operations

The transformation of memory operations has two goals. First, to guarantee that
stores only produce observable effects in the linearized program Pl when their counterpart
would cause observable effects in the original program P . Second, to ensure memory
safety, a concept that we formalize with Definition 4.2. Figure 4.9 introduces the rules that

4. Transforming Loop-Free Programs 47

we use to rewrite loads and stores. To identify which instructions require interventions,
we rely on the influence region (Def. 3.6) of basic blocks. We thus apply the rules from
Fig. 4.9 to operations in the influence region of any block that ends with a conditional
branch. The next example depicts the influence region of such a block.

Example 4.5. The influence region of the basic block if.0, from Figure 4.2, is the set
formed by blocks in paths from if.0 to its post-dominator end: if.1 and ret.false.
Given that if.0 ends with a conditional branch, every memory operation in its influence
region must be rewritten. Since if.0 itself is not within the influence region of any
conditional branch, the memory operations that belong to if.0 can be kept without any
changes. This, in fact, reflects the behavior of the original program: the two loads at
if.0 always execute, regardless of the inputs.

Definition 4.2 (Memory-Safe Transformation). Let T : Program → Program be a trans-
formation over programs. Then, T is said to be a memory-safe transformation if, and only
if, for every program P it follows that T (P) does not contain any out-of-bounds memory
accesses that do not occur in P .

c = i < size(x) c′ = BC (ℓ) || c i′ = ctsel c′, i , 0 a = ctsel c′, x, shadow

rewrite ld(y = x[i] @ ℓ) = (y = a[i′], a, i′)

rewrite ld(z = y[i] @ ℓ,G) = {z, a, i′} x′ = ctselBC (ℓ), x, z

rewritest(y[i]← x@ ℓ) = a[i′]← x′

Figure 4.9. Transformation rules for memory operations. Function rewrite ld makes
loads memory safe, while function rewritest makes stores both memory safe and
sound with respect to whether they should or not take effect. Both rules rely on
block conditions (see Definition 4.1).

Loads. Function rewrite ld , in Figure 4.9, takes the original load and returns a new load
that is memory safe, along with the base address and the index that compose the new
access. For that, we replace memory accesses that should not occur — i.e. the block
condition is false — and are not safe with accesses to a shadow address. To determine
whether an access is safe or not, we need the size of the structure being manipulated.
This can be obtained in multiple ways, e.g. by inferring the size or by asking the user
to provide it; in Figure 4.9, we abstract away this computation by relying on a function
named size. If the size of the value cannot be determined, the access is still guaranteed
to be safe, but it becomes data variant (see Theorem 5.3). In practice, we conservatively
estimate the size of LLVM arrays without user intervention.

4. Transforming Loop-Free Programs 48

Example 4.6. Consider the load pw.1 = pw[1] in Figure 4.4. Let bc.if.1 store the
block condition of node if.1 and pw.size store the size of the input pw. Then, following
function rewrite ld from Figure 4.9, we have the transformation that takes the original
code in Figure 4.10 (a) to produce the rewritten code in Figure 4.10 (b).

pw.1 = pw[1] pw[1] ← x

c = 1 < pw.size following load seen in part (b):

c′ = bc.if.1 || c x′ = ctsel bc.if.1, x, pw.1

i = ctsel c′, 1, 0 a[i]← x′

a = ctsel c′, pw, shadow

pw.1 = a[i]

a

b

c

d

Figure 4.10. (a) Original load from Figure 4.4. (b) Transformed load. (c) Example
of a store. (d) Transformed store.

Stores. Function rewritest , in Figure 4.9, takes the original store and produces a new
store that is both memory safe and sound with respect to observable effects. We first
create a safe load to get the current value stored in that memory region (or in the shadow
memory, depending on the circumstances). Then, we use the block condition BC (ℓ) to
select between the current value and the value to be stored: if BC (ℓ) is true, the original
store is performed, updating the value under that address and producing an observable
effect; otherwise, the store is silent.

Example 4.7. Suppose that we had a store like pw[1] ← x in block if.1 in Figure 4.2
(b). Following function rewritest from Figure 4.9, we first create a safe load, as shown in
Example 4.6. For convenience, let us reuse pw.1. The store will then be rewritten from
the original code seen in Figure 4.10 (c) into the sequence in Figure 4.10 (d).

4.3.4 Final Example

Figure 4.11 shows the transformed version of the code seen in Figure 4.4, which we
obtain after applying onto it the techniques discussed in this chapter. Variables g.size

and pw.size hold the sizes of the arrays g and pw whenever the function is invoked. If the

4. Transforming Loop-Free Programs 49

begin: g = public
pw = secret
n = public
r = public
shadow = public
g.size = public
pw.size = public
br if.0

if.0: g.0 = g[0]
pw.0 = pw[0]
p0 = g.0 != pw.0
p0.neg = !p0
br if.1

if.1: bc.if.1 = p0.neg
c0 = 1 < g.size
c1 = bc.if.1 || c0
i = ctsel c1, 1, 0
a = ctsel c1, g, shadow
g.1 = a[i]
c2 = 1 < pw.size
c3 = bc.if.1 || c2
j = ctsel c3, 1, 0
b = ctsel c3, pw, shadow
pw.1 = b[i]
p1 = g.1 != pw.1
br ret.false

ret.false: bc.ret.false = p0 || p1
br end

end: x = ctsel bc.ret.false, false, true
r ← x
halt

a

b

b c

d

Figure 4.11. CFG from Figure 4.4 after linearization and with the instructions
rewritten. (a) The shadow memory and the size of inputs g and pw, used in the
transformation of loads. (b) Computation of block conditions (§4.2, Figure 4.3). (c)
Predication of load instructions to ensure memory safety (§4.3.3, Figure 4.9). (d)
Transformation of a phi function (§4.3.2, Figure 4.7).

4. Transforming Loop-Free Programs 50

length of the array is not known statically, then its size is initialized with zero. Notice that
the length does not have to be a constant: it can be a symbolic expression. Whenever an
expression used to index an array is, in the original program, within the influence region
of a conditional branch, we compare such an expression against the length of that array.
This is the case of the loads g[1] and pw[1], as we can observe in Figure 4.11 (c). If
the comparison returns false and the block condition is false, the special variable shadow

is used as a surrogate address. Finally, we replace phi functions with a combination of
ctsels, as seen in Figure 4.11 (d)

4.4 Interprocedural Transformation

Cryptographic algorithms might be composed by a combination of functions. One
way to deal with multiple functions is to inline them. This approach, however, is not
always the best solution, for the transformation might result in code that is large enough
to render our techniques impractical. Therefore, in this section we present a simple, yet
efficient, rewriting principle that we use to avoid inlining when carrying out isochronifi-
cation. Every function that is called (the callee) within transformed code (the caller) is
modified in three ways:

1. The signature of the callee is augmented to receive a condition (Figure 4.12-ii);

2. The body of the callee is surrounded by a conditional test, guarded by the new
condition (Figure 4.12-iii); and

3. The caller is modified so that the block condition at the invocation point is passed
to the callee (Figure 4.12-i).

Notice that the conditions are computed as part of the transformation itself. In
other words, the transformation just described receives, for free, the block conditions as
a byproduct of the analysis discussed in §4.2 and shown in Figure 4.3.

4. Transforming Loop-Free Programs 51

1 // O r i g i n a l f u n c t i o n s :
2 void f (. . .) {
3 i f (p0) {
4 . . .
5 } e l s e i f (p1) {
6 . . .
7 g (. . .) ;
8 . . .
9 }

10 }
11
12 void g (. . .) {

13 . . .
14 }

// Transformed f u n c t i o n s :
void f (. . .) {

i f (p0) {
. . .

} e l s e i f (p1) {
. . .
h (. . . , ! p0 && p1)
. . .

}
}

void h (. . . , boo l p) {

i f (p) { . . . }
}

i. Change at calling site

ii. Change of interface

iii. Addition of new conditional

Figure 4.12. Interprocedural transformations.

52

Chapter 5

From PCFL to SCE

In §4, we introduced a code transformation that targets loop-free programs only. The
technique discussed in §4 makes no distinction with regard to public and secret inputs.
As a result, it eliminates all branches that exist in the original program. In this chapter,
we will extend this transformation so that it (i) linearizes only secret-dependent branches
and (ii) deals with general (unbounded) loops. We shall implement our ideas on top of the
same toy language defined in §4.1. We start by presenting Moll and Hack [2018]’s partial
control-flow linearization algorithm (§5.1). Then, in §5.2, we discuss how we identify which
branches are tainted (i.e. must be linearized). In §5.3, we expand the static analysis that
compute block and edge conditions (Definition 4.1) to handle loops. In §5.4, we develop
the new rewriting system. Finally, in §5.5, we close this chapter by showing that our
technique is correct.

5.1 Partial Control-Flow Linearization

Partial control-flow linearization is a code generation technique conceived for the
single instruction, multiple data (SIMD) execution model. SIMD machines are an eco-
nomically viable alternative to process the so-called “embarrassingly parallel” workloads.
The model characterizes the stream processors in graphics processing units (GPUs) [Gar-
land and Kirk, 2010] or the vector units found in modern CPUs [Chen et al., 2021], like
Intel x86’s SSE and AVX, AMD’s 3DNow!, ARM’s NEON, Sparc’s VIS, PowerPC’s Al-
tiVec and MIPS’ MSA. In this environment, multiple processing elements, or threads,
simultaneously execute the same operation on different data. Example 5.1 will make this
modus operandi more concrete.

Example 5.1. Figure 5.1 (a) shows a simplified CUDA kernel — a program meant to run
on a graphics processing unit. This program counts how many occurrences of keys stored
in the array q are present in the matrix d. Results are stored in the array r. Syntactically,
function search looks like standard C code. Semantically, it is very different: the program

5. From PCFL to SCE 53

will be executed by multiple threads in lockstep. Although threads see the same input
arguments q, d and r, they differ with respect to the special register tid. This identifier
is unique per thread. A common pattern in this environment is to use this register to set
up the work that each processing element will carry out. In this example, each thread
uses its own tid as the index of the value in q that must be searched in the matrix d. The
thread identifier also indicates the position in r where each thread will store its answer.

1 __global__ void s e a r c h (i n t ∗q , i n t d [T] [N] , i n t ∗ r) {
2 f o r (i n t i = 0 ; i < N; i++) {
3 i f (q [t i d] == d [t i d] [i])
4 r [t i d] += 1
5 }
6 }

0: br 1

1: i1 = phi [i0, 0], [i2, 5]
p0 = i < N
br p0, 2, 3

2: t0 = q[tid]
t1 = tid * N
t2 = t1 + i
t3 = d[t2]
p1 = t0 == t3
br p1, 4, 5

3: halt

4: t4 = r[tid]
t5 = t4 + 1
r[tid] ← t5
br 5

5: i2 = i1 + 1
br 1

0: br 1

1: i1 = phi [i0, 0], [i2, 5]
p0 = i < N
br p0, 2, 3

2: t0 = q[tid]
t1 = tid * N
t2 = t1 + i
t3 = d[t2]
p1 = t0 == t3
t4 = r[tid]
t5 = t4 + 1
t6 = ctsel p1, t5, t4
r[tid] ← t6
i2 = i1 + 1
br 1

3: halt

b c

a

uniform

divergent

Figure 5.1. (a) CUDA kernel that counts occurrences of keys in a matrix. (b)
Control-flow graph of the kernel. (c) Partially linearized control-flow graph.

The SIMD model suits very well straight-line code, that is, code without branches,
for the execution flow of the different processing elements never diverges in this setting.
However, programs do have branches over whose outcome threads might disagree. In
face of divergences, threads still move in lockstep at the hardware level; however, some
processing elements stop doing useful work. Typically, predicated instructions are used to

5. From PCFL to SCE 54

ensure that processing elements only write back their results when they run along paths
actually taken within the program. Example 5.2 illustrates this trend.

Example 5.2. Figure 5.1 (b) shows the control-flow graph (CFG) of the kernel seen in
Figure 5.1 (a). This CFG contains two conditional branches at the end of blocks 1 and
2. The former can be determined to be uniform, meaning that threads always take the
same decision when executing it; the latter is divergent. There exist standard compiler
analyses to separate uniform and divergent branches [Coutinho et al., 2011; Sampaio et al.,
2014]. Figure 5.1 (c) shows a linearization of the CFG in Figure 5.1 (b) that removes the
divergent branch while preserving the uniform one. The store in block 4 still happens,
but is silent, unless the predicate p1, which controls the divergent branch in Figure 5.1
(b), is true. A silent store writes to memory the same value that was already there. A
conditional selector (ctsel), guarded by p1, determines whether the store is silent or not.

Because only some, but not all, branches in Example 5.2 are removed, the lineariza-
tion is said to be partial. The current state-of-the-art algorithm for partial control-flow
linearization is due to Moll and Hack [2018]. Figure 5.2 shows a version of that algorithm
in Python syntax. We present the algorithm for the sake of completeness, for it is ex-
tensively described in its original exposition [Moll and Hack, 2018]. The algorithm visits
the basic blocks in the target graph in a special order: the compact topological ordering,
which is formalized in Definition 5.1.

Definition 5.1 (Compact Topological Ordering). An n-sequence of vertices v1, . . . , vn is
dominance compact if whenever v1 dominates vn then v1 dominates every vi, 1 < i < n.
Similarly, an n-sequence of vertices v1, . . . , vn is loop compact if whenever v1 and vn belong
to a loop L then every vi, i < i < n, belong to L as well. A topological ordering of G is
compact if it is both dominance and loop compact with respect to all dominance sets and
loops.

Function compact_order, in Figure 5.2 produces a compact topological or-
dering “Index” of the vertices in graph G. This function uses an auxiliary routine,
topological_sort, to produce some topological ordering of the nodes in a graph. Our
code also assumes the existence of an “idom” relation, such that idom(v, u) is true if v
is the immediate dominator of u. We say that v is the immediate dominator of node u

if, and only if, v dominates u, and for any other node t that also dominates u, t also
dominates v.

Function linearize in Figure 5.2 builds a graph GL that is a linearized version of
the graph G. Once a compact ordering “Index ” of the vertices in the CFG is built, the
function linearize, in Figure 5.2 visits this sequence of nodes in order. The algorithm
keeps a set D of deferred edges, which are edges that point to attractors : vertices that will
attract the next nodes yet to be visited. Once attractors are connected to the linearized

5. From PCFL to SCE 55

1 def compact_order (G, e n t r y) :
2 t s o r t = t o p o l o g i c a l_ s o r t (G)
3 end = l en (t s o r t)
4 def s c h edu l e (u , s t a r t) :
5 b idx = [u]
6 f o r i i n range (s t a r t , end) :
7 v = t s o r t [i]
8 i f G. idom (v , u) : # v i s the immediate dominator
9 b idx += sch edu l e (v , i + 1)

10 return b idx
11 return s c h edu l e (t s o r t [0] , 0)
12
13 def min_index (S , i n d i c e s) :
14 return f i r s t (i f o r i i n i n d i c e s i f i i n S)
15
16 def l i n e a r i z e (G) :
17 I ndex = compact_order (G, G . e n t r y)
18 GL = Graph (G . num_vert ices)
19 D = set () # The s e t o f d e f e r r e d edges
20 f o r b i n I ndex :
21 T = { s f o r (v , s) i n D i f v == b}
22 i f G. i s_un i fo rm (b) :
23 f o r s i n G. s u c c e s s o r s (b) :
24 nxt = min_index (T + { s } , I ndex)
25 GL . add_edge (b , nxt)
26 D = D + {(nxt , t) f o r t i n T + { s } \ { nxt }}
27 e l s e : # b i s d i v e r g e n t or i s u n c o n d i t i o n a l
28 S = G. s u c c e s s o r s (b)
29 i f (S) :
30 nxt = min_index (T + S , Index)
31 GL . add_edge (b , nxt)
32 D = D + {(nxt , t) f o r t i n T + S \ { nxt }}
33 D = D \ {(v , s) f o r (v , s) i n D i f v == b}
34 return GL

Figure 5.2. Partial Control-Flow Linearization. linearize(G) produces a graph
GL that is a partially linearized version of G. A preprocessing step removes the back
edges in G before linearization; hence, linearize receives an acyclic graph.

graph, edges pointing to them are removed from D. The successors of uniform branches
can still change (lines 23–26); however, the out-degree of those branches remains the same.
Divergent branches undergo more extensive changes: they keep only one successor (lines
29–32). The links that disappear are added to the set of deferred edges; hence, these
successors become attractors to be eventually reintegrated into the linearized graph.

Example 5.3. Figure 5.3 shows the order in which edges are added to the linearized
graph. The original edges are mostly kept, except when node 2 is visited (b = 2) in line
19 of Figure 5.2. Node 2 contains a divergent branch. Thus, the node nxt of smallest
index among the attractors and successors of 2 is chosen to bear the edge that leaves node
2 (lines 27–31 in Figure 5.2). The other successors s of node 2 are marked as targets of
edges nxt→ s in the set D of deferred edges.

5. From PCFL to SCE 56

10

3

4 5

2

10

3

4 5

2

10

3

4 5

2

10

3

4 5

2

10

3

4 5

2

10

3

4 5

2

b = 0, D = {} b = 1, D = {}

b = 2, D = {} b = 4, D = {4→5} b = 5, D = {}

remove back edge

b = 3 (no changes)

Figure 5.3. Sequence of steps that function linearize in Figure 5.2 performs on
the program from Figure 5.1, given that Index = [0, 1, 3, 2, 4, 5].

5.1.1 Properties of PCFL

In the remaining of this chapter, we will refer to two key properties of Moll and
Hack [2018]’s partial control-flow linearization. Therefore, for the sake of completeness,
we shall restate such properties. For more details about the proofs, we refer the reader
to Moll and Hack’s original presentation. The first property that we revisit talks about
the correspondence between paths in the original CFG G and in the partially linearized
CFG Gl, and it is stated as follows:

Theorem 5.1 (Path Embedding [Moll and Hack, 2018, Theorem 3.2]). For each path
π ∈ G, there is a path πl ∈ Gl such that π is a subpath of πl. By subpath, we mean that
the nodes seen in π can be found in πl in the same order that they appear in π.

The second property from Moll and Hack [2018] that we revisit is related to the
post-dominance relation in Gl. We write u ⪰PD v for post dominance in the original
graph G and u ⪰PD

l v for post dominance in the linearized graph Gl.

Lemma 5.1 (Post Dominance for Deferral Edges [Moll and Hack, 2018, Lemma B.3]).
Let b ∈ Index be the block currently being visited by the loop at lines 19–32 of the PCFL

5. From PCFL to SCE 57

algorithm in Figure 5.2 and let s be a block such that s ∈ T at line 20 — in other words,
s is the target of a deferral edge. Then, it follows that s ⪰PD

l b.

5.2 Taint Analysis

Partial control-flow linearization [Moll and Hack, 2018] was first devised to elim-
inate divergent branches from programs. In the context of software security, however,
we are interested in tainted branches. Our toy language (Figure 4.1) defines two in-
structions, secret and public, which we shall use to separate tainted from non-tainted
variables. Definition 5.2 categorizes these concepts.

Definition 5.2 (Tainted Information). The backward slice of a variable x is the transitive
closure of its control and data dependencies (see Definition 3.3). In this work, we consider
control dependencies only when dealing with phi functions and loads (see Figure 4.1). The
reasoning behind this decision is that these are the only kind of assignments that might
vary depending on a secret. For phi functions, this is trivial to see, since there are multiple
incoming values. Loads, in the transformed program, might vary due to the guards that
we add to them to ensure memory safety. For more details, see §5.3 and §5.4.3. A variable
is tainted if its backward slice contains a secret value. A branch whose condition uses a
tainted predicate is said to be tainted. A basic block that ends with a tainted branch is a
tainted block. And, finally, a loop that contains an exiting tainted block is a tainted loop.

There are standard static analyses that can be used to identify tainted
branches [Almeida et al., 2016; Rodrigues et al., 2016]. However, these techniques are
orthogonal to the transformation presented in this thesis, and shall not be discussed fur-
ther. In practice, we use the information analysis of Rodrigues et al. to label variables as
either tainted or non-tainted. Initially, users must indicate which inputs are secret. The
next example illustrates the notion of tainted information.

Example 5.4. Input pw is defined as secret in Figure 4.2. Since the definition of predicate
p1 relies — indirectly, through pw.i — on pw, the conditional branch at the end of the
basic block body is tainted. If a conditional branch is tainted, then the program contains
a time leak, following an earlier definition due to Rodrigues et al..

5. From PCFL to SCE 58

5.3 Predication

Back in §4.2, we defined a static analysis to compute the conditions that control
the execution of basic blocks. However, this static analysis only works with programs
that do not contain loops. In this section, we augment that analysis to handle general
programs. One of the core properties that the transformation described in this thesis
delivers is related to the termination of loops. We state this property as follows:

Property 5.1 (Loop Termination). If Pl is the partial linearization of a program P , then
any loop of Pl can only terminate due to non-tainted (i.e. public) predicates. If, during
the execution of the original program P , a loop L would have exited through a tainted
edge u → v, then the rest of the iterations of L in the partially linearized program Pl

shall produce no observable effects.

Due to Property 5.1, if L exits through a tainted edge u→ v, then, in Pl, once L

terminates, node v should be the only exit node whose block condition is true. However,
the block condition of node u in the remaining iterations becomes false. Consequently,
the edge condition of u → v, if we follow Figure 4.3, would also be false; thus, the basic
block v is not guaranteed to be active (see Definition 5.3). Therefore, Figure 4.3 does not
work for tainted exiting edges. In the rest of this section, we explain how to extend those
definitions for blocks and edges within loops.

5.3.1 Accounting for Time

Figure 4.3 does not account for the fact that basic blocks within loops may execute
multiple times. In other words, in general programs, blocks and edges may be associated
with multiple conditions. We introduce this notion of time into edge and block conditions
by associating them with a number i: BC i(ℓ) corresponds to the block condition of ℓ

at its i-th execution (similarly for ECi). In this sense, the definitions seen in Figure 4.3
correspond to ECi and BCi, i ≥ 1.

Tainted Exiting Edges. To solve the problem with tainted exiting edges, it suffices to
visualize them as n virtual edges, one for each iteration that the loop will perform in
Pl. If the edge condition of the i-th virtual edge is true, then this means that, in P ,
the loop would have exited in the i-th iteration (through that tainted edge). Thus, the

5. From PCFL to SCE 59

edge condition of a tainted exiting edge can be defined as the disjunction of the n edge
conditions associated with those n virtual edges.

Loop Headers. Figure 4.3 must be adjusted to work with loop headers. As Example 5.5
shows, block conditions must distinguish between forward edges and back edges (see
Definition 3.2).

Example 5.5. Consider the block body in Figure 4.2. The edge condition of
begin → body is true. Hence, if we use Figure 4.3 to compute the i-th block con-
dition of body, it will always be true. As a result, body will always be able to produce
observable effects, even when not supposed to.

Figure 5.4 shows the definition of ECi and BCi for, respectively, tainted exiting
edges and loop headers. In the case of headers, for the first iteration, we consider only
the forward edges, whereas for the remaining iterations we consider only the back edges.
Example 5.6 highlights the block and edge conditions for the loop seen in Figure 4.2.

type(ℓ→ℓ′) = Exiting Edge tainted(p) terminator(ℓ) = br p, ℓ′,_
EC i=1(ℓ→ ℓ′) = BC (ℓ) ∧ p

type(ℓ→ℓ′) = Exiting Edge tainted(p) terminator(ℓ) = br p, ℓ′,_
EC i>1(ℓ→ ℓ′) = EC i−1(ℓ→ ℓ′) ∨ (BC (ℓ) ∧ p)

type(ℓ→ℓ′) = Exiting Edge tainted(p) terminator(ℓ) = br p,_, ℓ′

EC i=1(ℓ→ ℓ′) = BC (ℓ) ∧ p

type(ℓ→ℓ′) = Exiting Edge tainted(p) terminator(ℓ) = br p,_, ℓ′

EC i>1(ℓ→ ℓ′) = EC i−1(ℓ→ ℓ′) ∨ (BC (ℓ) ∧ p)

type(ℓ) = Header predecessorsf (ℓ) = {ℓ1, . . . , ℓn}

BC i=1(ℓ) =
n∨

j=1

EC (ℓj → ℓ)

type(ℓ) = Header predecessorsb(ℓ) = {ℓ1, . . . , ℓn}

BC i>1(ℓ) =
n∨

j=1

EC (ℓj → ℓ)

Figure 5.4. Recursive definitions of block and edge conditions for headers
and tainted exiting edges. Function predecessorsf is related to forward edges and
predecessorsb to back edges. When written without subscripts, BC (ℓ) (similarly for
EC) refers to the last execution of block ℓ.

5. From PCFL to SCE 60

Example 5.6. For the loop seen in Figure 4.2 (b), we have BC 1(header) = EC 1(begin→
header) = true. That is because there are no conditions in the path from begin to
header, which means that, at the first iteration — where, for the loop header, accord-
ing to Figure 5.4, we consider only forward edges — block header will execute. For
the rest of the loop, we have EC 1(header → body) = p0, EC 1(body → latch) = p1,
and EC 1(body → ret.false) = p1. Now, suppose that n > 1 and, at the first itera-
tion, we have p1 = true. Then, we have BC 1(latch) = p1 = false. At the second
iteration, we consider for the loop header only the back edge; hence, BC 2(header) =

EC 1(latch → header) = BC1(latch) = false. In short, from the second iteration
onwards, the block condition of header, body and latch will be false, reflecting Prop-
erty 5.1. After the n iterations, we have EC n(body → ret.false) = true, since p1 was
true at the first iteration, and, consequently, EC 1(body → ret.false) = true. Hence,
block ret.false will be executed, which coincides with the fact that, in the original
program, the loop would have exited through the edge body→ ret.false.

5.3.2 Active Paths

We rely on the static analysis introduced in §4.2 and expanded in this section to
define the notion of active blocks and active edges. Active blocks (similarly for active
edges) are those that would be executed in the original program when given the same
inputs, and thus must produce the same effects as in the original program. Definition 5.3
formalizes these two concepts. We will refer to them in the proofs of theorems.

Definition 5.3 (Active Block/Edge). Let u and v be basic blocks in a program P . Block
v is said to be active if its block condition is true. An instruction that belongs to v is
active whenever block v itself is active. Similarly, an edge u→ v in P is said to be active
if its edge condition is true. Finally, we say that an incoming value of a phi function is
active whenever its corresponding incoming edge is active.

5.4 Rewriting System

The instructions of the partially linearized program must be rewritten, so that
original and transformed programs carry out the same set of observable effects. These

5. From PCFL to SCE 61

rewriting rules entail a number of properties concerning the elimination of time-based side
channels, which Theorems 5.2 (see §5.4.1) and 5.3 (see §5.4.3) summarize. Additionally,
these transformations preserve semantics, as Theorem 5.4 states (see §5.5).

5.4.1 Control Flow

Partial Control-Flow Linearization demands a compact ordering (see Defini-
tion 5.1), which implies dominance compactness and loop compactness. The former is
guaranteed by function compact_order seen in Figure 5.2. To attain the latter, we col-
lapse all loops into single nodes, producing a new graph structure with two types of nodes
— basic blocks and loops. Loop nodes, by construction, are compact. Hence, we can
apply compact_order to the root CFG as well as to every loop node and then join the
compact orderings obtained, as Example 5.7 shows.

Example 5.7. Figure 5.5 shows the linearization of the CFG from Figure 4.2. We first
collapse the loop formed by nodes header, body and latch into a single node L. Loop
L is tainted because one of its exiting blocks — body — is tainted. We then produce a
compact ordering of the CFG with its loop collapsed, which Figure 5.5 (b) shows, as well
as a compact ordering of L, shown in Figure 5.5 (c). Since there is no tainted branch in
the loop L, the loop is left unchanged. The compact ordering for the CFG can be seen as
the merge of the two compact orderings from (b) and (c): begin, header, body, latch,
ret.true, ret.false, end.

To deal with divergent loops (i.e. loops with divergent exiting blocks), Moll and
Hack [2018] merge every loop exit into a single exiting block at the end of the loop, which
becomes the new (unique) loop latch. The transformed loop then terminates only when
all threads do. This approach, however, leads to dummy execution of instructions that
could have been avoided had the public exits been preserved. In this work, we followed
a different path: we redirect every public exiting edge of a tainted loop to the first exit
block that appears in the compact ordering of the basic blocks. The following example
further clarifies our partial linearization:

Example 5.8. Figure 5.5 (d) shows the linearization of the CFG with the loop collapsed.
Notice that there is now a single edge leaving the loop L. This edge corresponds to every
public exiting edge of a loop; in this example, there is only one from header to ret.true,
but there could be more. Fig. 5.5 (e) shows the final version of the CFG.

5. From PCFL to SCE 62

begin

headerlatch

body

ret.false

ret.true

end

begin

L

ret.false ret.true

end

header

body

latch

begin

L

ret.false ret.true

end

begin

headerlatch

body

ret.false

ret.true

end

a b c

d e

0

1

23

4

0

1

2

Figure 5.5. (a) CFG from Figure 4.2; dashed arrows represent back edges; gray
nodes are tainted. (b) The CFG with collapsed loop; numbers indicate the compact
ordering. (c) Compact ordering of loop. (d) The collapsed CFG after linearization.
(e) Whole CFG after linearization.

In Example 5.8, the tainted branch at node body does not exist after linearization.
Thus, the transformed CFG is operation invariant according to Definition 5.4: regardless
of the secret inputs, it runs the same sequence of instructions. This observation is not
exclusive to Example 5.8. As Theorem 5.2 states, partial linearization ensures operation
invariance with regard to secret inputs. The proof of Theorem 5.2 relies on two auxiliary
properties stated by Lemmas 5.2 and 5.3.

Definition 5.4 (Operation Invariance). Let I = (S,P) be the inputs taken by a program
P , where S and P are powersets of, respectively, the set of secret and public inputs. Let
P ∈ P be an arbitrary instance of the public inputs and CP : S → T be a deterministic
channel mapping instances of the secret inputs to traces of operations observed from
the execution of P . P is said to be operation invariant if CP(S1) = CP(S2), for every
S1,S2 ∈ S. In other words, CP is channel 1, i.e. the channel that leaks nothing.

Lemma 5.2 (Post Dominance for Tainted Branches). Let u be a tainted block and let v1

5. From PCFL to SCE 63

and v2 be the successors of the basic block u in the original program P . Then, after PCFL
either v1 ⪰PD

l v2 or v2 ⪰PD
l v1.

Proof. Notice that either edge v1 → v2 or edge v2 → v1 become a deferral edge at line 31
of Figure 5.2, depending on which of them comes first in the compact ordering. Since the
proof is the same for both cases, we will assume the first scenario: v1 comes first in the
compact ordering and thus v1 → v2 becomes a deferral edge. When node v1 is visited,
we have (v1, v2) ∈ D and thus v2 ∈ T at line 20 of Figure 5.2. Hence, from Lemma 5.1 it
follows that v2 ⪰PD

l v1.

Lemma 5.3 (PCFL Induces a Single Trace of Operations). Let I = (S,P) be the inputs
taken by a program P , where S and P are powersets of, respectively, the set of secret and
public inputs, and let P ∈ P be an arbitrary instance of the public inputs. Furthermore,
let u and v be blocks in P such that v ⪰PD u and assume that u is tainted. Then, given
P, after PCFL there is a single trace τ of operations from u to v for every S ∈ S.

Proof. The proof will be by induction on the number of operation traces from block u to
block v in the original program P :

Base case: If there is no tainted branch in the influence region of node u (see Defi-
nition 3.6), then, for a fixed instance P of P, there are exactly two subtraces
τ1 and τ2 of operations, each one starting with one of the successors w1 and
w2 of u. Assuming that w1 comes first than w2 in the compact ordering (the
proof is the same for the opposite scenario), we know that the edge u→ w2

will be removed and, from Lemma 5.2, we know that w2 ⪰PD
l w1. Hence, the

instructions from w2 to v will be merged into τ1 — the trace in P that starts
with w1 — forming a single trace τ in Pl.

Induction step: Let W be the set of tainted blocks in the influence region of node
u that are not further nested, i.e. blocks that have nesting level equals to
the nesting level of u plus one. By induction, there is exactly one trace τw in
Pl from every w ∈ W to their post-dominators. By combining these disjoint
traces, following the paths in Pl, we get two traces τ1 and τ2 starting with
each one of the successors of u. Then, the same reasoning that we used for
the base case applies and we get a single trace τ from u to v in Pl.

Corollary 5.1 (Local Operation Invariance). Let I = (S,P) be the inputs taken by a
program P , where S and P are powersets of, respectively, the set of secret and public
inputs. Let u and v be blocks in P such that v ⪰PD u and assume that u is tainted. Then,
after PCFL the region from block u to block v in Pl is operation invariant.

5. From PCFL to SCE 64

Theorem 5.2 (PCFL Gives Operation Invariance). Let Pl be the partial linearization of
a program P . Then, program Pl is operation invariant.

Proof. Let V be the set of tainted blocks with nesting level equals zero in the original
program P (i.e. the outermost branches in P). From Lemma 5.3, we know that, for a
fixed instance P of P (the set of public inputs), there is exactly one trace τv of operations
in Pl for every v ∈ V . Hence, by joining these disjoint traces, we get a single trace τ for
the entire program Pl. Therefore, for a fixed instance P , the sequence of instructions in
Pl is the same regardless of S ∈ S, meaning that CP maps every instance S ∈ S to the
same trace τ ∈ T with probability 1.

Corollary 5.2 (Trace Relations). Let Pl be the partial linearization of a program P . Let
τ1 and τ2 be traces of memory addresses that correspond to the execution of P when given
instances I1 = (S1,P) and I2 = (S2,P), S1 ̸= S2. Since Pl is operation invariant, it
follows that |τ1| = |τ2| and, for any i, the accesses to the addresses τ1[i] and τ2[i] are
caused by the same instruction.

5.4.2 Phi Functions

As we have explained in §4.1, our transformation has been designed to operate on
programs in the Static Single Assignment (SSA) Form. The SSA representation uses phi
functions to join definitions of variables names that, in the original — pre-SSA transfor-
mation — code, would represent the same memory location. The partial linearization of
a program P may lead to invalid phi functions in Pl, for a predecessor of a block v in P

may not be a predecessor of v in Pl. Example 5.9 illustrates this issue.

Example 5.9. Figure 5.6 (a) shows a CFG before linearization, with block b marked as
tainted. Fig. 5.6 (b) shows that CFG after PCFL. Linearization removes the edge d→ g,
hence reducing the arity of the phi function at g from three to two arguments. The rest
of this section will explain how the phi function must be rewritten.

The rules that rewrite phi nodes rely on three helper functions split, fill and fold,
which Figure 5.7 defines. Function split, in Figure 5.7 separates the arguments of a
phi node into two sets K and R. K contains the arguments of the phi function whose
corresponding blocks still are predecessors of ℓ — the block that contains the phi node —
in Pl. Let φ be the phi function to be transformed and φl the new phi function that
shall replace φ in Pl. Arguments in K are safe to be transported to φl without any

5. From PCFL to SCE 65

a

b c

d fe

g: x = phi [x1, d], [x2, e], [x3, f]

a

cbd

fe: x1’ = phi [x1, d], [undef, c]

g: x1” = phi [x1’, e], [undef, f]
x’ = phi [x2, e], [x3, f]
x = ctsel ec.d_g, x1”, x’

a b

Figure 5.6. (a) CFG before partial linearization; block b is tainted. (b) CFG after
partial linearization, with the phi function at block g rewritten; variable ec.d_g
stores the edge condition of edge d → g from the original graph (see Definition 4.1,
Figures 4.3 and 5.4).

modifications, since the predecessor relation has not changed; thus, we fill as much as
possible of the arguments of φl with K.

Function fill is responsible for moving the old arguments from φ to φl (unstarred
version, third rule). Once all pairs from K were consumed, we start filling the arguments
of φl with set R. However, the basic blocks in R are not predecessors of ℓ in Pl anymore.
Hence, we need to adjust the pairs from R before attaching them as arguments of φl. We
proceed as follows: if there is a block ℓj in R that reaches ℓ′ (a predecessor of ℓ in Gl) in
the graph G (unstarred version, first rule) then we replace ℓj — the original predecessor
associated with value xj — with ℓ′. However, xj might not be always available in ℓ′,
which could potentially break the SSA constraints. Hence, we must guarantee that xj is
defined when the program flows to ℓ′; we encapsulated that as function SSAfy . If there
is no such a block ℓj (unstarred version, second rule), we associate the (new) predecessor
ℓ′ with a special value undef, meaning that there is no incoming value for φ that relates
to block ℓ′. The starred version of fill applies fill to all the predecessors of ℓ in Gl and
returns the arguments from φ that have not yet been linked to φl.

The third and final step for rewriting a phi function is to link with φl those argu-
ments from φ that are still unlinked. This is accomplished with function fold, which uses
the block conditions (see Definition 4.1) of the old predecessors of ℓ to conditionally se-
lect between values. The transformation of phi functions is thus the composition of split,
fill and fold, and it is represented by function rewriteϕ in Figure 5.7. Function rewriteϕ

returns the variable that shall hold the value of φ in Pl; it is worth noting, however,
that there are intermediate instructions that must be added to the basic block as well.
Example 5.10 illustrates the transformation of phi nodes.

Example 5.10. The phi function at block g in Figure 5.6 (a) is rewritten in Figure 5.6

5. From PCFL to SCE 66

K = {[ei, ℓi] | ℓi→ℓ ∈ E(Gl)} R = {[ei, ℓi] | ℓi→ℓ /∈ E(Gl)}
split(x = phi [e1, ℓ1], . . . , [en, ℓn] @ ℓ,Gl) = (K,R)

∄ [ei, ℓi] ∈ K : ℓi ∈ (ℓ′ ∪ ℓs) ∃ [ej, ℓj] ∈ R : reachG(ℓj, ℓ
′)

fill(ℓ′ ∪ ℓs,K,R,G) = [SSAfy(xj), ℓ′]

∄ [ei, ℓi] ∈ K : ℓi ∈ (ℓ′ ∪ ℓs) ∄ [ej, ℓj] ∈ R : reachG(ℓj, ℓ
′)

fill(ℓ′ ∪ ℓs,K,R,G) = [undef , ℓ′]

∃ [ei, ℓi] ∈ K : ℓi ∈ ℓs

fill(ℓs,K,R,G) = ([ei, ℓi], K,R) fill(∅, K,R,G)
∗
= (∅, K ∪R)

fill(ℓs,K,R,G) = ([ei, ℓi], K
′, R′) fill(ℓs \ ℓi, K ′, R′, G)

∗
= (A,U)

fill(ℓs ̸= ∅, K,R,G)
∗
= ([ei, ℓi] ∪ A,U)

yi = ctselEC (ℓi → ℓ), SSAfy(ei), x

fold(x@ℓ, [ei, ℓi] ∪ U)
∗
= fold(yi@ℓ, U) fold(x@ℓ, ∅) ∗

= x

split(x = phi . . .@ ℓ,Gl) = (K,R)

fill(predecessorsGl
(ℓ), K,R,G)

∗
= ({[e1, ℓ1], . . . , [ek, ℓk]}, U)

fold(x = phi [e1, ℓ1], . . . , [ek, ℓk] @ ℓ, U)
∗
= z

rewriteϕ(x = phi . . .@ ℓ,G,Gl) = z

Figure 5.7. Transformation rule for phi nodes. inst@ℓ indicates that the instruction
belongs to the block labeled by ℓ. E(G) are the edges of graph G. fold relies on edge
conditions (see Definition 4.1, Figures 4.3 and 5.4).

(b). It is almost intact, except for the argument [x1, d], because the edge d → g was
deleted. A ctsel instruction links the erased argument with the new phi function. The
ctsel is parameterized by the edge condition of d→ g, which in Figure 5.6 (b) is encoded
as variable ec.d_g. Two new phi nodes are created to preserve the SSA property, since
x1 may not be available in blocks c and f.

5.4.3 Memory Operations

Previously, in §4, we were linearizing the entire control-flow graph. Consequently,
we needed to rewrite all memory operations lying in the influence region of any conditional
branch. In this chapter, however, we are only partially linearizing CFGs. Therefore, only

5. From PCFL to SCE 67

memory operations control dependent on secret need to be modified. As in §4.3.3, we will
rely on the influence region (Definition 3.6) of basic blocks to identify which instructions
require interventions. We thus apply the rules from Figure 4.9 to loads and stores in the
influence region of tainted blocks (Definition 5.2). Example 5.11 depicts the influence
region of a tainted block. Examples 5.12 and 5.13 wrap up the transformation of loads
and stores on partially linearized programs.

Example 5.11. The influence region of the tainted block body, from Figure 4.2, is the
set formed by blocks in paths from body to its post-dominator end: body, latch, header,
ret.true and ret.false. body is within its own influence region because it is inside a
loop and thus there are paths from body to end that go through body itself.

Example 5.12. The load pw.i = pw[i0] in Figure 4.2 must be transformed, because it
lays within the influence region of a tainted block (see Example 5.11). Let bc.body store
the block condition of body and pw.size store the size of pw. Then, following function
rewrite ld from Figure 4.9, we have the transformation that takes the original code in
Figure 5.8 (a) to produce the rewritten code in Figure 5.8 (b).

pw.i = pw[i0] pw[i0] ← x

c = i0 < pw.size following load seen in part (b):

c′ = bc.body || c x′ = ctsel bc.body, x, pw.i

j0 = ctsel c′, i0, 0 a[j0]← x′

a = ctsel c′, pw, shadow

pw.i = a[j0]

a

b

c

d

Figure 5.8. (a) Original load from Figure 4.2. (b) Transformed load. (c) Example
of a store. (d) Transformed store.

Example 5.13. Suppose that we had a store like pw[i0]← x in block body in Figure 4.2.
Following function rewritest from Figure 4.9, we first create a safe load, as shown in
Example 5.12. For convenience, let us reuse pw.i. The store will then be rewritten from
the original code seen in Fig. 5.8 (c) into the sequence in Fig. 5.8 (d).

Like previous work [Borrello et al., 2021; Cauligi et al., 2019], we cannot trans-
form a program that contains memory indexation that depends on secret inputs. In
other words, we cannot transform the following code: int foo(secret v, int m[]):

5. From PCFL to SCE 68

return m[v]. Quoting Cauligi et al. [2019], the above code is not “publicly safe”. Def-
inition 5.5 augments this concept with the notion of shadow safety. Shadow safety is
not part of Cauligi et al. work, because FaCT programs are publicly safe by construction,
in contrast to C. Definition 5.6, then, formalizes the notion of data invariance — the
data-related counterpart of operation invariance (Definition 5.4) — which, as stated by
Theorem 5.3, is guaranteed whenever the original program is publicly safe. In the proof
of Theorem 5.3 and henceforth, we write JeK to indicate the evaluation of e.

Definition 5.5 (Safety). A program meets shadow safety if, for every memory access
m[i], the index i is neither data nor control dependent on secret. If, in addition, for
every access m[i] that is control dependent on secret, i < size(m) can be statically
proven, then this program meets public safety [Cauligi et al., 2019].

Example 5.14. Function oFdF in Figure 1.1 (a) is shadow safe: variable i, used to index
memory accesses at line 6, is not dependent on any secret. However, the accesses at line 6
are control dependent on the predicate g[i] != pw[i], which relies on the secret input pw.
Thus, this program will be publicly safe if it can be proven that i < size(g)∧i < size(pw).
The proof technique is immaterial to this discussion.

Definition 5.6 (Data Invariance). Let I = (S,P) be the inputs taken by a program P ,
where S and P are powersets of, respectively, the set of secret and public inputs. Let
P ∈ P be an arbitrary instance of the public inputs and CP : S → T be a deterministic
channel mapping instances of the secret inputs to traces of memory addresses observed
from the execution of P . P is said to be data invariant if CP(S1) = CP(S2), for every
S1,S2 ∈ S. In other words, CP is channel 1, i.e. the channel that leaks nothing.

Theorem 5.3 (The Data Contract). Let T (P) = P ′ be the partial linearization of a
program P with instructions rewritten as described in §§5.4.2 and 5.4.3. If program P is
publicly safe, then P ′ is data invariant. If program P is shadow safe, then either P ′ is
data invariant or there exist two input instances I1 = (S1,P) and I2 = (S2,P), S1 ̸= S2,
with corresponding traces of memory addresses τ1 and τ2 such that τ1[i] = shadow or
(exclusive) τ2[i] = shadow, for some i.

Proof. Let P be an instance of the public inputs taken by the partially linearized program
P ′. Then, for every pair of instances S1 and S2 of the secret inputs, we have that CP maps
S1 and S2 to, respectively, τ1 and τ2, with probability 1. Recall that, from Corollary 5.2,
we have |τ1| = |τ2| and, for any i, τ1[i] and τ2[i] must correspond to the same instruction,
although their values — i.e. addresses — might not be equal. Let τ1[i] = a, τ2[i] = a′ and
let m[j] be the combination of the base address and the index that caused such memory
accesses. We shall split the proof into two cases:

5. From PCFL to SCE 69

P ′ is publicly safe: We know that j < size(m). Hence, even if the access to m[j]

is not active, the original address will always be selected in the ctsels that
define m and j (rewritest , Figure 4.9). Therefore, a = a′ and, given that our
choice of the memory access was arbitrary, τ1 = τ2. Thus, the theorem holds
— i.e. P ′ is data invariant, since CP maps S1 and S2 to the same traces.

P ′ is shadow safe: Let S1 and S2 be instances of the secret inputs such that a ̸=
a′ — otherwise, the theorem already holds. By inspecting rule rewritest

(Figure 4.9) we know that the only possible values for Jm[j]K are the original
address from P or shadow. Since we assumed a ̸= a′, either address a or a′

— but not both — must be the shadow memory.

From Theorem 5.3, the only way to have shadow as one of the addresses accessed
by P ′ is to have indices larger than the known size of the associated buffer.

5.4.4 Final Example

Figure 5.9 shows the transformed code that we obtain after applying the techniques
discussed in this chapter onto the code seen in Figure 4.2. Variables g.size and pw.size

hold the sizes of the arrays g and pw whenever the function is invoked (Figure 5.9 (a)). If
the length of the array is not known statically, then its size variable is initialized with
zero. Notice that, as mentioned in §4.3.4, the length does not have to be a constant: it
can be a symbolic expression. Whenever an expression used to index array array lies, in
the original program, within the influence region of a tainted branch, we compare such
an expression against the length of that array. This is the case of loads g[i] and pw[i]

in the basic block body. If the comparison returns false and the block condition is false,
the special variable shadow is used as a surrogate address (Figure 5.9 (d)). Figure 5.9 (b)
shows the computation of the block condition of header, while (c) shows the computation
of the edge condition of body→ ret.false, following the description from §5.3. Finally,
Figure 5.9 (e) shows the transformation of the phi node seen in block end of Figure 4.2,
as described in §5.4.2.

5. From PCFL to SCE 70

begin: g = public
pw = secret
n = public
r = public
shadow = public
g.size = public
pw.size = public
br header

header: i0 = phi [0, begin], [i1, latch]
bc.header =

phi [true, begin],
[ec.latch_header, latch]

ec.body_ret.false =
phi [false, begin],

[ec.body_ret.false”, latch]
p0 = i0 < n
br p0, body, ret.true

latch: p1.neg = !p1
bc.latch = bc.body && p1.neg
ec.latch_header = bc.latch
i1 = i0 + 1
br header

body: bc.body = bc.header && p0
c0 = i0 < g.size
c1 = bc.body || c0
j0 = ctsel c1, i0, 0
a = ctsel c1, g, shadow
g.i = a[j0]
c2 = i0 < pw.size
c3 = bc.body || c2
j1 = ctsel c3, i0, 0
b = ctsel c3, pw, shadow
pw.i = b[j1]
p1 = g.i != pw.i
ec.body_ret.false’ = bc.body && p1
ec.body_ret.false” =

ec.body_ret.false || ec.body_ret.false’
br latch

ret.true: br ret.false

ret.false: bc.ret.false =
ec.body_ret.false

br end

end: x = ctsel bc.ret.false,
false, true

r <- x
halt

a

b

b

c

c

d

e

Figure 5.9. CFG from Figure 4.2 after PCFL and with the instructions rewritten.
(a) The shadow memory and the size of inputs g and pw, used in the transformation
of tainted loads. (b) Computation of the block condition of the loop header (§5.3,
Figure 5.4). (c) Computation of the edge condition of the tainted exiting edge
body→ ret.false (§5.3, Figure 5.4). (d) Predication of load instructions to ensure
memory safety (§5.4.3, Figure 4.9). (e) Transformation of a phi function (§5.4.2,
Figure 5.7).

5. From PCFL to SCE 71

5.5 Correctness

In this section, we will demonstrate that our code transformation is correct. That
is, the program that we generate produces the same set of observable effects as the original
program, when given the same inputs. This property is stated by Theorem 5.4. We also
claim that, for shadow-safe programs, our transformation never produces a repaired code
worse (i.e. that leaks more) than the original version (Theorem 5.5). This is essentially
the concept of refinement from QIF, early introduced in §3.2. Furthermore, if the original
program is publicly safe, then its transformed version will be both operation and data
invariance, which implies isochronicity, as stated by Theorem 5.6.

5.5.1 Isochronification Preserves Semantics

The proof of correctness will be constructed on top of a few auxiliary Lemmas.
Lemma 5.4 says that PCFL, as described in this thesis, does not add to nor remove any
blocks from a CFG. We write V (G) for the vertices of a graph G.

Lemma 5.4 (PCFL Preserves Basic Blocks). Let Gl be the partial linearization of CFG
G. Then, V (G) = V (Gl).

Proof. The proof follows directly from the PCFL algorithm defined in Figure 5.2 and the
approach for handling tainted loops described in §5.4.1.

Lemma 5.5 states that any block executed in program P has a corresponding block
that is active (Definition 5.3) in the linearized program Pl when given the same input.
Recall that we write ⟨. . .⟩ for ordered sequences.

Lemma 5.5 (Active Trace). Let Pl be the partial linearization of P and let τ be the trace
of blocks executed in P when given an arbitrary input. Then, there exists a unique trace
of blocks τl executed in Pl when given the same input such that, for every block v ∈ τ , it
follows that v ∈ τl and v is active in Pl.

Proof. The proof will be by induction on τ :

Base case: In the base case, there exists a single block v ∈ τ , which consequently
is the first block of P . Since the first block has no predecessors in P and we
do not add to nor remove any blocks from Pl — as stated by Lemma 5.4 —

5. From PCFL to SCE 72

the block condition of v is true. Therefore, block v will be active in Pl (see
Definition 5.3).

Induction step: Let τ = ⟨v1, . . . , vk−1, vk⟩. By induction, we know that there exists
τl executed in Pl such that vi is active, 1 ≤ i < k. Let vj ∈ τ , j < k, be the
predecessor of vk that was executed in P . Since the edge vj → vk was taken,
we know that the edge condition of edge vj → vk is true, and from the way
block conditions are computed (Figures 4.3 and 5.4) — i.e. based on edge
conditions — it follows that the block condition of vk is true as well. Hence,
we have that vk is active in Pl. Furthermore, from Theorem 5.1, we know
that vk will be reachable from vj in Pl. Thus, since we are considering the
same input for P and Pl, it must be that vk ∈ τl, which is the unique trace
for such an input.

The next lemma is about the equivalence between the expressions in the original
program P and the transformed program P ′. It will be used in the proof for Theo-
rem 5.4 (correctness). We write JeK to indicate the evaluation of e. When writing := in
assignments, := can be either = (for general assignments) or ← (for stores).

Lemma 5.6 (Expression Equivalence). Let T (P) = P ′ be the partial linearization of
program P with instructions rewritten as described in §§5.4.2 and 5.4.3. Let x := e be an
assignment in P and let x′ := e′ be the counterpart assignment of x in P ′. Then, for any
instance of the inputs such that x := e is executed in P , it follows that x′ := e′ is active in
P ′ and JeK = Je′K.

Proof. Consider an arbitrary instance of the inputs and let τ be the ordered sequence of
assignments in P when given such an input. From Lemma 5.5, any block executed in P

is active in P ′. Hence, if x := e ∈ τ , its counterpart x′ := e′ will be active in P ′, since they
belong to the same block. It remains to show the correspondence between expressions e

and e′. The proof will be by structural induction on the multiple assignment forms:

(a) x = public | secret: These special assignments only indicate that x corre-
sponds to an input and the transformation described in this chapter never
really touches them. Hence, if the assigment is active in P ′, the value as-
signed will be the same as in P , for we are considering the same inputs for
both the original program P and the repaired version P ′.

(b) x = e: Let expression e be composed by subcomponents v1, . . . , vn. Then, by
induction on each vi, 1 ≤ i ≤ n, we know that JviK = Jv′iK, where v′i is the
counterpart of vi in P ′. Thus, it must be that e evaluates to the same value
in both P and P ′, when given the same inputs.

5. From PCFL to SCE 73

(c) x = m[i]: From rule rewrite ld seen in Figure 4.9, we know that this assignment will
be rewritten as x = a[i′]. But, since the assignment is active, i.e. the block
condition is true, it follows that a ≡ m and i′ ≡ i. That is, the assignment
that will be performed is the same in both P and P ′. By induction we know
that the values of m and i are the same in P and P ′, when given the same
input. Hence, the memory access in P ′, under the described circumstances,
will be the same as in P . It remains to show that the value stored in that
address is the same in P and P ′, which follows by induction.

(d) m[i]← e: From rule rewritest (Figure 4.9), we know that this assignment will be
rewritten as a[i′]← e′. Since the assignment is active in P ′, we have e′ ≡ e,
a ≡ m and i′ ≡ i. By the same reasoning used in case (b), we can conclude
that JeK = Je′K. Thus, since the memory region accessed in P and P ′ will
be the same, the value stored in this address, after the store operation is
performed, will be the same in P and P ′.

(e) x = phi [e1, ℓ1], . . . , [en, ℓn]: First notice that there cannot be two edge conditions
EC (ℓi → ℓ) and EC (ℓj → ℓ), i ̸= j, that are true at the same time, since
two edges cannot be taken simultaneously. From function rewriteϕ defined
in Figure 5.7, we know that the edge conditions are used as the conditions of
ctsel instructions that link incoming values that did not fit in the transformed
phi function. The counterpart of x in P ′ will either be the transformed phi
function or the last ctsel created, if any. Let ℓi → ℓ be the active edge (i.e.
edge condition is true). Then, either the incoming value ei still is an incoming
value in the transformed phi function, and consequently the condition of every
ctsel will be false, or there will be a single ctsel whose condition is true and
which will select ei. In both cases, we have Jphi [e1, ℓ1], . . . , [en, ℓn]K = Je′K.

(f) x = ctsel c, vt, vf : This kind of assignment is never modified by the transforma-
tion described in this chapter. Thus, it suffices to show that c, vt and vf

evaluate to the same values in P and P ′, which follows directly by induction.

With Lemmas 5.5 and 5.6, we can prove the correctness of our transformation:

Theorem 5.4 (Semantics). Let T (P) = P ′ be the partial linearization of program P with
instructions rewritten as described in §§5.4.2 and 5.4.3. If P ′ terminates, then programs
P and P ′ produce the same set of observable effects.

Proof. The only instruction in our toy language that can produce observable effects is a
store. From function rewritest defined in Fig. 4.9, we have the following three cases:

5. From PCFL to SCE 74

Store is active: Let the store be of the form a′ ← e′ and let a← e be its counterpart
in P . Since a′ ← e′ is active in P ′, the original memory region is accessed —
i.e. a ≡ a′ — and the store updates the state of the memory. By Lemma 5.6,
we have JeK = Je′K. Therefore, the state of a in both P and P ′ is updated
with the same value, thus causing the same effects.

Store is not active ∧ access is safe: The original memory region is accessed, but
the value to be assigned is replaced with the current value stored in that
memory address; hence, the store is silent and no effect can be observed —
i.e. the state of the memory does not change after the store is executed.

Store is not active ∧ access is not safe: The original store is replaced with a
store to shadow and the value to be assigned is replaced with the value
currently stored in shadow; hence, the store is performed silently and no
effect can be observed.

It remains to show that every store executed in program P is active in program
P ′, which follows from Lemma 5.5.

5.5.2 Isochronification Implements Refinement

We now move our attention to the property of refinement. Theorem 5.5 states
that, whenever the original program P is shadow safe, the code that results from the
transformation described in this thesis never leaks more than P .

Theorem 5.5 (Refinement). Let T (P) = P ′ be the partial linearization of a program
P with instructions rewritten as described in §§5.4.2 and 5.4.3, and assume P is shadow
safe. Let I = (S,P) be the inputs taken by P , where S and P are powersets of, respectively,
the set of secret and public inputs. Finally, let P ∈ P be an arbitrary instance of the public
inputs. Then, if CP : S → T and DP : S → T ′ are deterministic channels mapping the
secret inputs to traces of operations and memory addresses observed from the execution
of, respectively, P and P ′, it follows that CP ⊑◦ D

P .

Proof. By Theorem 5.2, P’ is operation invariant. If P is publicly safe, then, by Theo-
rem 5.3, P ′ is data invariant. In this case, DP maps every instance S ∈ S to a single
trace τ ∈ T ′, inducing a partition with a single cell, which is coarser than that induced
by CP ; thus, CP ⊑◦ DP . If P is not publicly safe, then, by hypothesis, it is at least
shadow safe. Since P ′ is operation invariant, for a fixed instance P ∈ P, the instructions

5. From PCFL to SCE 75

executed are all the same, regardless of the secret inputs. Thus, we shall focus on the
memory addresses only. Let S ∈ S be an arbitrary instance of the secret inputs, where
S = {s1, . . . , sn}. Pick a memory access m[j] control dependent on si, 1 ≤ i ≤ n, such that
there exists one possible value of si that triggers an access to the shadow memory in P ′ —
if such a memory access does not exist, P ′ is data invariant and, as observed before, the
theorem holds. Then, in the original program P , there are exactly two options, according
to the value of si: either the address m[j] is in the trace or it is not. In P ′, on the other
hand, the memory access will always be executed. However, there is again exactly two
scenarios: either the original address or the shadow memory will be accessed. Therefore,
the partitions induced by CP and DP will be the same, and thus we can conclude that
CP ⊑◦ D

P .

If the original program is not only shadow safe, but also publicly safe (Defini-
tion 5.5), then the repaired code meets isochronicity; that is, regardless of the sensitive
inputs, the transformed program runs the same sequence of instructions and accesses the
same sequence of memory addresses. This property is formally described as follows:

Theorem 5.6 (Isochronicity). Let T (P) = P ′ be the partial linearization of a publicly-
safe program P with instructions rewritten as described in §§5.4.2 and 5.4.3. Then, P ′ is
both operation and data invariant.

Proof. Follows directly from Theorems 5.2 and 5.3.

76

Chapter 6

Evaluation

This chapter evaluates the techniques described in this thesis through five research ques-
tions:

RQ1: By how much does the proposed approach increase code size?

RQ2: What is the running time of applying the proposed transformation onto pro-
grams?

RQ3: How does the proposed approach impact the running time of programs?

RQ4: What are the security guarantees achieved by the proposed approach?

RQ5: How the general C programs compiled with the proposed approach compare
with programs written in a domain-specific language for constant-time cryp-
tography?

We report numbers for both our loop-free method (presented in §4), which we call
as “Lif”, and our general technique (described in §5), which we refer to as “PCFL”. To
provide perspective on our results, we compare them with those produced by FaCT [Cauligi
et al., 2019], SC-Eliminator [Wu et al., 2018] and Constantine [Borrello et al., 2021]. The
last two tools aim at making programs data and operation invariant with regard to secret
inputs. Our implementations, in turn, only guarantee operation invariance, although
when handling publicly safe programs they also ensure data invariance. Code written in
the FaCT domain-specific language is, by construction, publicly safe; hence, FaCT delivers
both operation and data invariance for this class of programs. When presenting results
for SC-Eliminator and Constantine, we show how these tools fare with and without
data-flow protection.

Hardware. Experiments run on an Intel(R) Core(TM) i5-1035G1 4-Core processor,
clocked at 3.6 GHz. L1 data and instruction caches have 128 KB. Main memory has
8 GB.

6. Evaluation 77

Software. The above hardware runs in Linux Manjaro 21.2.5 (5.16.14-1-generic
x86_64). Our program transformations are implemented in LLVM 13.0. We use a version
of Constantine downloaded from https://github.com/pietroborrello/constantine,
which is implemented in LLVM 9.0. SC-Eliminator is available as an ACM arti-
fact at https://zenodo.org/record/1299357, using LLVM 3.9.1. However, due to
problems to reuse that artifact, we have downloaded SC-Eliminator directly from
https://bitbucket.org/mengwu/timingsyn, and have updated it to use LLVM 13.0.
We use a version of FaCT downloaded from https://github.com/PLSysSec/FaCT, which
uses libraries from LLVM 6.0. These tools were downloaded on December 6th, 2021.
Therefore, results from this paper can be directly compared with SC-Eliminator, using
LLVM 13.0 to obtain the original bytecode that will be transformed. Constantine, on
the other hand, uses LLVM 9.0; hence, the starting bytecode file is not guaranteed to be
the same.

To check if the transformed benchmarks run in constant time, we used CTgrind, a
Valgrind [Nethercote and Seward, 2007] plugin available at https://github.com/agl/
ctgrind. In addition to linearizing the control-flow graph of programs, Constantine and
SC-Eliminator also try to eliminate memory-based side channels. SC-Eliminator does
it by preloading data in the beginning of functions; Constantine does it by traversing
the entire buffer whenever a cell within said buffer is read or written. Such interven-
tions make code much slower and much bigger. Thus, for fairness, we show results for
these tools with and without data preloading. It is our understanding that, once data
linearization is disabled, SC-Eliminator and Constantine work for the same purpose as
our implementation of PCFL.

Benchmarks. We use 13 benchmarks, including seven from Wu et al. [2018]. Each
benchmark has at least two inputs, with parts tagged as either public or secret. Two
of the benchmarks, ssl3 and donna, are from the FaCT repository. We have translated
them into C. We implemented the four remaining benchmarks: hash-one, plan-many,
plain-one and log-redactor, to exercise control-flow constructs absent in Wu et al.’s
collection. The benchmark plain-one corresponds to the example that we have been
using throughout the paper (Figure 4.2). Programs hash-one and plain-many are vari-
ations of plain-one. As a side note, we handle, without any user intervention, six of the
seven programs used in Borrello et al.’s and Wu et al.’s evaluation that contain any control
flow branching on sensitive data. The only exception is loki91, because its original imple-
mentation contains a loop whose every exit is controlled by sensitive information; hence,
it is inherently leaky. Numbers reported in this chapter refer to the transformed program,
optimized with LLVM opt -O3. The evaluation of security guarantees (§6.5) uses these op-
timized programs, in binary format. The benchmarks contain code to initialize inputs and
print outputs; however, our numbers refer only to their kernels. Lif and SC-Eliminator

https://github.com/pietroborrello/constantine
https://zenodo.org/record/1299357
https://bitbucket.org/mengwu/timingsyn
https://github.com/PLSysSec/FaCT
https://github.com/agl/ctgrind
https://github.com/agl/ctgrind

6. Evaluation 78

cannot transform three benchmarks due to unbounded loops: donna, ssl3 and loki91.
Benchmark plain-many, when transformed by Constantine, Lif and SC-Eliminator,
crashes at running time. Furthermore, for benchmark ssl3, Constantine produces code
whose output is incorrect.

6.1 RQ1: Size of Transformed Code

Figure 6.1 reports the size of the programs produced by the different tools that we
evaluate in this paper. Size is measured by counting LLVM instructions in the interme-
diate representation of the transformed kernel after optimizations run.

ha
sh
-o
ne

pl
ai
n-
m
an
y

pl
ai
n-
on
e

do
nn
a

ss
l3

lo
g-
rd
ct

3w
ay de
s

lo
ki
91

ca
st
5

di
jk
st
ra

fin
dm

ax

hi
st
.101

102

103

104

105

42 32 16 67
2

27
9

89 22
5

46
1

17
0

2,
00
8

77 42 17

C
od

e
si

ze
 (n

um
be

r o
f L

LV
M

 in
st

ru
ct

io
ns

)

Figure 6.1. Code size (in number of LLVM instructions) of transformed programs.
Numbers on top show the size of original programs (compiled with LLVM 13.0 at
the -O3 optimization level). Symbols in gray boxes show tools that are missing
for particular benchmarks. CTT refers to Constantine, SC refers to SC-Eliminator.
Orig refers to these two tools as originally implemented. CFL refers to these two tools
with control-flow linearization only — thus, closer to our implementation of PCFL
in purpose.

Considering only the nine benchmarks that SC-Eliminator and Lif handle,
our implementation of PCFL generates 3,393 LLVM instructions. The original ver-
sion of SC-Eliminator produces 97,772 instructions, whereas SC-Eliminator’s CFL
gives 76,004. Lif generates 138,079 instructions. It is worth remembering that both
SC-Eliminator and Lif were applied to a version of the programs with loops entirely

6. Evaluation 79

unrolled, for neither of the two tools can handle general loops; hence the higher num-
ber of instructions. The complete implementation of Constantine (CFL + DFL) yields
4,182 LLVM instructions, while Constantine’s CFL outputs 3,293. When compiled with
LLVM 13.0 at -O3, the original 13 benchmarks add up to 4,130 instructions, 2,977 of
which corresponds to the subset of nine benchmarks handled by all tools. In relative
terms, our partial linearization increases code size by 1.33x. Considering only the 11
benchmarks correctly handled by Constantine, Constantine’s original and CFL-only
implementations increase code size by, respectively, 2.73x and 2.64x.

6.2 RQ2: Transformation Time

Figure 6.2 shows the time (in milliseconds) that each technique evaluated in this
paper takes to transform programs. To provide the reader a baseline, we also show the
time that LLVM takes to apply all the optimizations at the -O3 level onto these programs.
Numbers refer only to the time taken by opt, LLVM’s optimizer, to run passes onto LLVM
intermediate representation: it does not include time to parse C or to generate machine
code — roughly the same for all the approaches.

ha
sh
-o
ne

pl
ai
n-
m
an
y

pl
ai
n-
on
e

do
nn
a

ss
l3

lo
g-
rd
ct

3w
ay de
s

lo
ki
91

ca
st
5

di
jk
st
ra

fin
dm

ax

hi
st
.

101

102

103

104

100

105 16
.6
1

17
.4
1

15
.4
1

44
.2
8

25
.8
4

19
.3
9

22
.2
5

35
.4
6

22
.6
2

59
.7
3

20
.8
7

15
.9
7

16
.9
1

Tr
an

sf
or

m
at

io
n

tim
e

(m
s)

Figure 6.2. Time (in milliseconds) to apply each transformation onto the bench-
marks. To give the reader some perspective on this comparison, the numbers on top
show the time taken to run LLVM opt -O3 on each benchmark. The gray boxes mark
benchmarks that some tools could not handle.

Considering only the nine benchmarks that all tools can deal with, it takes, on

6. Evaluation 80

average, 24.73 ms to apply opt -O3 onto each benchmark, without any transformation.
Our PCFL technique takes about 33.49 ms per benchmark. Lif, not counting the time
to unroll loops, takes 271.61 ms. The original implementation of SC-Eliminator takes
2,697.06 ms, whereas SC-Eliminator’s CFL takes 2,149.28 ms. SC-Eliminator and Lif

are slower because they operate on larger programs, due to unrolling. Constantine’s
CFL takes about 65.19 ms per benchmark. However, when we consider the entire script
used to apply Constantine — which includes everything from profiling up to all the
transformations that it applies — this number grows up to 2,045.22 ms. This total is
the summation of several independent passes that Constantine applies — some of them
coming from LLVM’s accompanying tools. Thus, LLVM bytecodes are read and traversed
multiple times. We understand that were these passes grouped into a single LLVM pass,
Constantine could run faster.

6.3 RQ3: Performance of Transformed Code

Figure 6.3 shows the running time of transformed programs. Timing the bench-
marks was challenging: except for loki91, they all run under less than 1 ms. We ex-
ecuted each benchmark 20 times per tool, removed the two fastest and the two slowest
samples per benchmark and averaged the remaining 16 samples. We then used Student’s
T-Test [Gosset, 1908] to check for statistically significant results across all the three pop-
ulations, pair-wisely. Assuming a confidence level of 99%, and considering only the nine
benchmarks that SC-Eliminator and Lif can handle, we could observe five results where
the programs produced by our implementation of PCFL run faster than those generated
by SC-Eliminator’s CFL and six results where our approach performs better than both
SC-Eliminator’s original implementation and Lif, our loop-free method. Lowering the
confidence interval to 0.95, we observe one additional benchmark for which our PCFL
technique yields code that runs faster than the code produced by SC-Eliminator’s CFL.
The mean overhead introduced by both SC-Eliminator and our PCFL is of 1.61x. The
CFL-only version of SC-Eliminator adds less overhead onto programs: 1.42x. Lif, on
the other hand, generates code that is 3.74x slower. Nonetheless, the expressive overhead
promoted by Lif was hugely influenced by the benchmark des (8.32x slower).

Assuming a confidence level of 99%, our PCFL method performs better than both
Constantine’s original and CFL-only implementations in six out of the 11 benchmarks
correctly handled by Constantine. By lowering the confidence interval to 0.95, we could
observe one additional benchmark for which we produce faster code than Constantine

(both versions). The overhead introduced by Constantine with respect to the nine bench-

6. Evaluation 81

ha
sh
-o
ne

pl
ai
n-
m
an
y

pl
ai
n-
on
e

do
nn
a

ss
l3

lo
g-
rd
ct

3w
ay de
s

lo
ki
91

ca
st
5

di
jk
st
ra

fin
dm

ax

hi
st
.100

101

102

103

104

105

106
3.
90

4.
43

1.
80

63
.2
4

11
.6
0

1.
50

1.
74

5.
23

10
0,
79
8.
0

2.
61

6.
63

1.
23

4.
45

R
un

ni
ng

 ti
m

e
of

 tr
an

sf
or

m
ed

 p
ro

gr
am

s
(µ

s)

Figure 6.3. Running time (in microseconds) of transformed programs. Numbers
on top show time of original programs (compiled with LLVM 13.0). Symbols in gray
boxes show missing tools for particular benchmarks.

marks that all tools can correctly deal with was larger than ours: 4.62x for the original
implementation and 1.94x for Constantine’s CFL-only version. Similarly to the case of
Lif, the huge overhead introduced by Constantine’s original tool was heavily influenced
by the benchmark histogram (12.26x slower). If we consider the 11 benchmarks that
Constantine handles, then its average overhead is of 2.24x (original) and 2.12x (CFL),
whereas the overhead imposed by our implementation of PCFL is of 1.17x — which is
also the mean overhead caused by our tool if we consider all the 13 benchmarks.

6.4 RQ4: Security Evaluation

Figure 6.4 summarizes the security guarantees met by code produced by the dif-
ferent tools considered in this work. Figure 6.4 evaluates data and operation invariance.
To verify the latter, we relied on CTgrind [Langley, 2010], a Valgrind plugin that de-
termines if a program contains a branch that reads data tainted by secret information.
CTgrind reports that SC-Eliminator failed to achieve operation invariance for two bench-
marks: hash-one and histogram. We analyzed the LLVM intermediate files produced
by SC-Eliminator and confirmed that SC-Eliminator indeed failed to linearize some of
the tainted branches. In several benchmarks, CTgrind reports that code produced by

6. Evaluation 82

Constantine is not operation invariant. Debugging the code produced by Constantine

is harder than analyzing the code produced by SC-Eliminator, because Constantine

applies a more extensive range of transformations on the target program. We inspected
the code that Constantine produced for plain-only, our smallest kernel. In that case,
CTgrind’s result seems to be a false positive: Constantine uses memory cells whose pur-
pose is similar to our shadow memory. These blocks of memory are not initialized but
might be used in conditional operations, albeit never modifying the observable state of
the program. In this case, CTgrind issues warnings because it considers as tainted any
memory that is not initialized.

Data Opr Opr3 Cor Data Opr Opr3 Cor Data Opr Opr3 Cor Data Opr Opr3 Cor Data Opr Opr3
Y N N Y Y Y Y Y Y Y Y Y Y N N Y Y N N
N N N Y N Y Y X X X X X X X X X X X X
N N N Y N Y Y Y N Y Y Y N Y Y Y N N N
N N N Y Y Y Y UL UL UL UL UL UL UL UL Y N N N
Y N N Y Y Y Y UL UL UL UL UL UL UL UL N N N N
N N N Y N Y Y Y N Y Y Y N Y Y Y N N N
Y N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
N N N Y N Y Y Y N Y Y Y N Y Y Y N Y Y
Y N N Y Y Y Y UL UL UL UL UL UL UL UL Y Y Y Y
N Y Y Y N Y Y Y N Y Y Y N Y Y Y Y Y Y
N N N Y N Y Y Y N Y Y Y N Y Y Y Y N N
Y N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
N N N Y N Y Y Y N Y Y Y N N Y Y N N N

Original PCFL Lif SC-Eliminator Constantine

hash-one
plain-many
plain-one
donna
ssl3

log-rdct
3way
des

loki91
cast5

dijkstra
findmax

histogram

N Property not verified Y Property verified UL Unbounded loop X Tool crashes or transformed program crashes

Figure 6.4. Security guarantees achieved by the different tools. Cor indicates if
the transformed program produces the same output as its original counterpart (i.e.
if the transformed program is correct). Data refers to data invariance. Opr refers
to operation invariance without compiler optimizations. Opr3 refers to operation
invariance at the LLVM opt -O3 optimization level.

When probing data variance in Figure 6.4, we use an LLVM instrumentation pass
to verify if the sequence of addresses accessed by each kernel is the same, regardless of the
input. In this case, we consider the original versions of Constantine and SC-Eliminator,
not the versions that only do control-flow linearization. In several cases, we observe
that neither tool achieves data invariance in our “string-of-addresses” threat model. This
apparent failure is a consequence of the threat model that these tools assume: they
consider all the memory accesses to a cache line as the same access. SC-Eliminator

reads every buffer at the beginning of the kernel. Constantine replaces every memory
access like a[i] with a loop that reads the entire array a. Yet, to be practical, both
tools use strided accesses to scan arrays. Thus, an access such as a[i%n] will remain
data variant after transformed by either SC-Eliminator or Constantine, as long as n is
smaller than the size of the cache line. In both cases, the size of the cache line is set as part
of the implementation of the tools, and changing it requires recompilation. Our failures to
achieve complete data invariance, in turn, are due to the fact that some memory accesses

6. Evaluation 83

are replaced with the shadow memory, which is a unique address for the entire program.
Nevertheless, we could verify that the data contract stated in Theorem 5.3 holds for all
the 13 benchmarks. In particular, we ported ssl3 and donna from FaCT. When written in
FaCT, every benchmark is publicly safe, and we succeed in delivering the same guarantees
as that domain-specific language: complete non-interference between secret inputs and
addresses accessed in the instruction and data caches.

6.5 RQ5: Comparison with a Domain-Specific

Language

Our implementation of partial-control flow linearization in LLVM in practice gives
developers the chance to obtain in C (or other languages that LLVM supports) the same
security guarantees provided by FaCT [Cauligi et al., 2019]. However, contrary to C, FaCT
deals with less general control-flow constructs. Currently, FaCT supports three control-flow
statements: if-then-else; for-from-to and return. Our implementation of PCFL, in
contrast, handles the whole of the LLVM intermediate representation, whose unstructured
control flow subsumes the entire C grammar, including constructs absent in FaCT, such
as do-while, break, continue and goto1. Only four out of the 13 benchmarks that we
evaluate in this paper admit straightforward translation between C and FaCT: plain-one,
plain-hash, openssl-ssl3 and donna. The last two were taken from the FaCT repository
and translated to C. Figure 6.5 compares the code produced for these programs.

The programs written in FaCT are, usually, shorter and faster. However, the pro-
grams that we generate contain code to ensure memory safety, like the use of the shadow
memory, as in Figure 5.8 (b). Therefore, every linearized load operation in a program
produced with our technique will contain four extra instructions absent in the equivalent
FaCT program. Moreover, the transformation of a store operation requires a load to read
the current value in memory. Because this load is also safe, the four-instruction overhead
also applies. In FaCT, developers use a type qualifier, assume(e), which let them specify
that expression e is the upper bound of an array. This clause works as a contract: the
compiler does not generate code to ensure in-bounds accesses; rather, the programmer
promises that buffer limits will be respected. Thus, it is possible to provoke out-of-bounds
access in the FaCT program, because contracts are not verified. To this effect, we have
forced out-of-bounds accesses in plain-one — something that cannot happen in the bi-

1PCFL has one restriction concerning the goto statement: loops must be natural. The implication
of this fact is that PCFL will not linearize a loop with multiple entry points. In the C programming
language, such loops can be created with goto.

6. Evaluation 84

ssl3

donna

plain-one

without main

PCFL FaCT

with main without main with main

hash-one

Figure 6.5. Comparison between programs written in C and linearized with PCFL,
and similar programs written in FaCT, using equivalent control-flow structures. The
column .o shows the size, in bytes, of the binary object file. The column Instrs
shows the number of instructions in the LLVM representation of each program. Be-
cause they use different main functions, we show results with and without this rou-
tine.

nary produced with PCFL.

85

Chapter 7

Conclusion

During these two years, we developed a code transformation technique to eliminate time-
based side channels. This transformation ensures that a program always runs the same
sequence of operations, regardless of the sensitive inputs it takes. In addition, if a program
satisfies certain constraints — at least shadow safety (Definition 5.5) — then the repaired
code never leaks more than its original counterpart (Theorem 5.5).

A key contribution of this work is the adaptation of a technique first developed in
the context of vectorization — Moll and Hack [2018]’s partial control-flow linearization —
to solve an open question in software security: the static elimination of side channels in
general programs, while preserving branches controlled only by public information. We
believe that, for publicly safe programs (Definition 5.5), the techniques discussed in this
thesis let a programmer write, directly in general-purpose languages like C, code that
meets the same safety properties as algorithms written in the FaCT [Cauligi et al., 2019]
domain-specific language.

In contrast to previous techniques [Wu et al., 2018], our approach is capable of
transforming programs with unbounded loops, as long as these loops contain at least one
exiting edge that depends only on public data (Property 5.1). As opposed to the work
of Borrello et al. [2021], the transformation described in §5 does not require profiling
information, and yet it handles as many programs as Constantine. Furthermore, as
shown in §§6.1 and 6.3, code generated by our tools are competitive when compared to
previous work [Wu et al., 2018; Borrello et al., 2021], and the transformation itself has
practical compilation time (§6.2).

It is worth remembering that, contrary to Wu et al.’s and Borrello et al.’s works,
in this thesis we did not present any specific method to mitigate cache-based leaks (e.g.
preloading). Even though we discussed throughout the thesis the concept of data invari-
ance and its importance in implementations of cryptographic routines, our transformation
is focused on the elimination of instruction-based leaks; i.e. it ensures operation invari-
ance (Definition 5.4). Nevertheless, for publicly safe programs, our transformation also
delivers data invariance (Definition 5.6). This last guarantee is a consequence of the fact
that publicly safe programs that are operation invariant are also data invariant, a property
that follows from Theorem 5.6. We believe that, considering the current state-of-the-art

7. Conclusion 86

techniques, the most efficient approach would be to combine our static control-flow lin-
earization scheme with Borrello et al.’s data-flow linearization technique to provide full
protection against time-based leaks.

87

Bibliography

Agat, J. (2000). Transforming out timing leaks. In Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’00,
page 40–53, New York, NY, USA. Association for Computing Machinery.

Allen, F. E. (1970). Control flow analysis. SIGPLAN Not., 5(7):1–19. ISSN 0362-1340.

Allen, J. R., Kennedy, K., Porterfield, C., and Warren, J. (1983). Conversion of con-
trol dependence to data dependence. In POPL, page 177–189, New York, NY, USA.
Association for Computing Machinery.

Almeida, J. B., Barbosa, M., Barthe, G., Dupressoir, F., and Emmi, M. (2016). Verifying
constant-time implementations. In Proceedings of the 25th USENIX Conference on
Security Symposium, SEC’16, page 53–70, USA. USENIX Association.

Almeida, J. B., Barbosa, M., Barthe, G., Grégoire, B., Koutsos, A., Laporte, V., Oliveira,
T., and Strub, P. (2020). The last mile: High-assurance and high-speed cryptographic
implementations. In 2020 IEEE Symposium on Security and Privacy (SP), pages 965–
982, New York, NY, USA. IEEE.

Alvim, M. S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., and Smith,
G. (2020). The Science of Quantitative Information Flow. Springer.

Appel, A. W. (1997). Modern Compiler Implementation in Java. Cambridge University
Press, USA. ISBN 0521583888.

Balliu, M., Dam, M., and Guanciale, R. (2014). Automating information flow analysis
of low level code. In CCS, page 1080–1091, New York, NY, USA. Association for
Computing Machinery.

Barthe, G., Blazy, S., Grégoire, B., Hutin, R., Laporte, V., Pichardie, D., and Trieu,
A. (2019). Formal verification of a constant-time preserving C compiler. Proc. ACM
Program. Lang., 4(POPL).

Barthe, G., Grégoire, B., Laporte, V., and Priya, S. (2021). Structured leakage and
applications to cryptographic constant-time and cost. In CCS, page 462–476, New
York, NY, USA. Association for Computing Machinery.

Bibliography 88

Barthe, G., Grégoire, B., and Laporte, V. (2018). Secure compilation of side-channel coun-
termeasures: The case of cryptographic “constant-time”. In 2018 IEEE 31st Computer
Security Foundations Symposium (CSF), pages 328–343.

Besson, F., Dang, A., and Jensen, T. (2019). Information-flow preservation in compiler
optimisations. In 2019 IEEE 32nd Computer Security Foundations Symposium (CSF),
pages 230--23012. IEEE.

Borrello, P., D’Elia, D. C., Querzoni, L., and Giuffrida, C. (2021). Constantine: Au-
tomatic side-channel resistance using efficient control and data flow linearization. In
CCS, page 715–733, New York, NY, USA. Association for Computing Machinery.

Cauligi, S., Soeller, G., Johannesmeyer, B., Brown, F., Wahby, R. S., Renner, J., Grégoire,
B., Barthe, G., Jhala, R., and Stefan, D. (2019). Fact: A dsl for timing-sensitive
computation. In PLDI, page 174–189, New York, NY, USA. Association for Computing
Machinery.

Chattopadhyay, S. and Roychoudhury, A. (2018). Symbolic verification of cache side-
channel freedom. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 37(11):2812–2823.

Chen, Y., Mendis, C., Carbin, M., and Amarasinghe, S. (2021). Vegen: A vectorizer
generator for simd and beyond. In ASPLOS, page 902–914, New York, NY, USA.
ACM.

Cleemput, J. V., Coppens, B., and De Sutter, B. (2012). Compiler mitigations for time
attacks on modern x86 processors. ACM Trans. Archit. Code Optim., 8(4). ISSN
1544-3566.

Clements, A. (2013). Computer Organization and Architecture: Themes and Variations.
Cengage Learning, USA. ISBN 1111987041.

Cock, D., Ge, Q., Murray, T., and Heiser, G. (2014). The last mile: An empirical study
of timing channels on sel4. In CCS, page 570–581, New York, NY, USA. Association
for Computing Machinery.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
Algorithms, Third Edition. The MIT Press, 3rd edition. ISBN 0262033844.

Coutinho, B., Sampaio, D., Pereira, F. M. Q., and Meira Jr., W. (2011). Divergence
analysis and optimizations. In PACT, page 320–329, USA. IEEE.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. (1989). An
efficient method of computing static single assignment form. In POPL, page 25–35,
New York, NY, USA. Association for Computing Machinery.

Bibliography 89

Deng, C. and Namjoshi, K. S. (2017). Securing the SSA transform. In International Static
Analysis Symposium, pages 88--105. Springer.

Deng, C. and Namjoshi, K. S. (2018). Securing a compiler transformation. Formal Methods
in System Design, 53(2):166--188.

Dhem, J., Koeune, F., Leroux, P., Mestré, P., Quisquater, J., and Willems, J. (1998).
A practical implementation of the timing attack. In Quisquater, J. and Schneier, B.,
editors, CARDIS, volume 1820 of Lecture Notes in Computer Science, pages 167--182,
Berlin, Heidelberg. Springer-Verlag.

Fell, A., Pham, H. T., and Lam, S.-K. (2019). Tad: Time side-channel attack defense
of obfuscated source code. In Proceedings of the 24th Asia and South Pacific Design
Automation Conference, ASPDAC ’19, page 58–63, New York, NY, USA. Association
for Computing Machinery.

Ferrante, J. and Mace, M. (1985). On linearizing parallel code. In PLDI, page 179–190,
New York, NY, USA. Association for Computing Machinery.

Ferrante, J., Ottenstein, K. J., and Warren, J. D. (1987). The program dependence graph
and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349. ISSN
0164-0925.

Flynn, M. J. (1972). Some computer organizations and their effectiveness. Transactions
on Computers, 21(9):948–960. ISSN 0018-9340.

Garland, M. and Kirk, D. B. (2010). Understanding throughput-oriented architectures.
Commun. ACM, 53(11):58–66. ISSN 0001-0782.

Gosset, W. S. (1908). The probable error of a mean. Biometrika, 6(1):1--25. Originally
published under the pseudonym “Student”.

Gruss, D., Lettner, J., Schuster, F., Ohrimenko, O., Haller, I., and Costa, M. (2017).
Strong and efficient cache side-channel protection using hardware transactional mem-
ory. In Security Symposium, page 217–233, USA. USENIX Association.

Guarnieri, M., Köpf, B., Reineke, J., and Vila, P. (2020). Hardware-software contracts
for secure speculation.

Hunt, S. and Sands, D. (2006). On flow-sensitive security types. SIGPLAN Not.,
41(1):79–90. ISSN 0362-1340.

Karrenberg, R. and Hack, S. (2012). Improving performance of opencl on cpus. In
Compiler Construction, page 1–20, Berlin, Heidelberg. Springer-Verlag.

Bibliography 90

Kocher, P. C. (1996). Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In CRYPTO, page 104–113, Berlin, Heidelberg. Springer-Verlag.

Kocher, P. C., Jaffe, J., and Jun, B. (1999). Differential power analysis. In CRYPTO,
page 388–397, Berlin, Heidelberg. Springer-Verlag.

Langley, A. (2010). Checking that functions are constant time with valgrind.
https://github.com/agl/ctgrind.

Lattner, C. and Adve, V. (2004). LLVM: A compilation framework for lifelong program
analysis and transformation. In CGO, page 75, USA. IEEE Computer Society.

Leroy, X. (2009). Formal verification of a realistic compiler. Commun. ACM,
52(7):107–115. ISSN 0001-0782.

Moll, S. and Hack, S. (2018). Partial control-flow linearization. In PLDI, page 543–556,
New York, NY, USA. Association for Computing Machinery.

Moreira, R. E., Collange, C., and Quintão Pereira, F. M. (2017). Function call re-
vectorization. In PPoPP, page 313–326, New York, NY, USA. Association for Com-
puting Machinery.

Nethercote, N. and Seward, J. (2007). Valgrind: A framework for heavyweight dynamic
binary instrumentation. SIGPLAN Not., 42(6):89–100. ISSN 0362-1340.

Ngo, V. C., Dehesa-Azuara, M., Fredrikson, M., and Hoffmann, J. (2017). Verifying and
synthesizing constant-resource implementations with types. In Security and Privacy,
pages 710–728, Washington, DC, USA. IEEE.

Rafnsson, W., Jia, L., and Bauer, L. (2017). Timing-sensitive noninterference through
composition. In POST, page 3–25, Berlin, Heidelberg. Springer-Verlag.

Rane, A., Lin, C., and Tiwari, M. (2015). Raccoon: Closing digital side-channels through
obfuscated execution. In SEC, page 431–446, USA. USENIX Association.

Reparaz, O., Balasch, J., and Verbauwhede, I. (2017). Dude, is my code constant time? In
DATE, page 1701–1706, Leuven, BEL. European Design and Automation Association.

Rice, H. G. (1953). Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74(2):358--366.

Rodrigues, B., Quintão Pereira, F. M., and Aranha, D. F. (2016). Sparse representation
of implicit flows with applications to side-channel detection. In Proceedings of the 25th
International Conference on Compiler Construction, CC 2016, page 110–120, New York,
NY, USA. Association for Computing Machinery.

Bibliography 91

Sampaio, D., Souza, R. M. d., Collange, C., and Pereira, F. M. Q. a. (2014). Divergence
analysis. ACM Trans. Program. Lang. Syst., 35(4). ISSN 0164-0925.

Singel, R. (1976). Declassified nsa document reveals the secret history of TEMPEST
about (TEMPEST: A signal problem). Cryptologic Spectrum, 2(3):26--30.

Soares, L., Canesche, M., and Pereira, F. M. Q. a. (2022). Side-channel elimination via
partial control-flow linearization. Computer Science Department, Federal University of
Minas Gerais (UFMG). Manuscript submitted for publication.

Soares, L. and Pereira, F. M. Q. a. (2021). Memory-safe elimination of side channels.
In 2021 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), pages 200–210, Washington, USA. IEEE Press.

Tizpaz-Niari, S., Černý, P., and Trivedi, A. (2019). Quantitative mitigation of timing
side channels. In Dillig, I. and Tasiran, S., editors, Computer Aided Verification, pages
140--160, Cham. Springer International Publishing.

Towle, R. A. (1976). Control and Data Dependence for Program Transformations. PhD
dissertation, University of Illinois at Urbana-Champaign, USA. AAI7624191.

Van Cleemput, J., De Sutter, B., and De Bosschere, K. (2020). Adaptive compiler strate-
gies for mitigating timing side channel attacks. IEEE Transactions on Dependable and
Secure Computing, 17(1):35–49.

Wolfe, M. J. (1978). Techniques for improving the inherent parallelism in programs –
master thesis. Master’s thesis, University of Illinois at Urbana-Chaimpain.

Wray, J. C. (1992). An analysis of covert timing channels. J. Comput. Secur.,
1(3–4):219–232. ISSN 0926-227X.

Wu, M., Guo, S., Schaumont, P., and Wang, C. (2018). Eliminating timing side-channel
leaks using program repair. In ISSTA, page 15–26, New York, NY, USA. Association
for Computing Machinery.

Zdancewic, S. and Myers, A. C. (2001). Robust declassification. In CSFW, page 5, USA.
IEEE Computer Society.

Zhang, R., Bond, M. D., and Zhang, Y. (2022). Cape: Compiler-aided program trans-
formation for htm-based cache side-channel defense. In Compiler Construction, page
181–193, New York, NY, USA. Association for Computing Machinery.

	1 Introduction
	1.1 The Breakthroughs of 2021
	1.2 Enter Partial Control-Flow Linearization
	1.3 The Contributions of this Work
	1.3.1 Threat Model
	1.3.2 Comparison with Previous Work

	1.4 Summary of Results
	1.5 Publications

	2 Literature Review
	2.1 Partial Control-Flow Linearization
	2.2 Side Channels
	2.2.1 Detection of Side Channels
	2.2.2 Mitigation of Side Channels
	2.2.3 Constant-Time Preservation

	3 Preliminaries
	3.1 Graph Definitions
	3.2 Quantitative Information Flow

	4 Transforming Loop-Free Programs
	4.1 Baseline Language
	4.2 Predication
	4.3 Rewriting System
	4.3.1 Control Flow
	4.3.2 Phi Functions
	4.3.3 Memory Operations
	4.3.4 Final Example

	4.4 Interprocedural Transformation

	5 From PCFL to SCE
	5.1 Partial Control-Flow Linearization
	5.1.1 Properties of PCFL

	5.2 Taint Analysis
	5.3 Predication
	5.3.1 Accounting for Time
	5.3.2 Active Paths

	5.4 Rewriting System
	5.4.1 Control Flow
	5.4.2 Phi Functions
	5.4.3 Memory Operations
	5.4.4 Final Example

	5.5 Correctness
	5.5.1 Isochronification Preserves Semantics
	5.5.2 Isochronification Implements Refinement

	6 Evaluation
	6.1 RQ1: Size of Transformed Code
	6.2 RQ2: Transformation Time
	6.3 RQ3: Performance of Transformed Code
	6.4 RQ4: Security Evaluation
	6.5 RQ5: Comparison with a Domain-Specific Language

	7 Conclusion
	Bibliography

